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Introduction

@ In many practical applications of RL, Model of the environment is not
available

@ Agent learns from the environment, often by sampling state
transitions and rewards

o Naive ways:
e Monte Carlo Update: For episodic tasks. Unbiased estimate, but high

variance
e Temporal Difference Update: For continuing tasks. Low Variance, but

high bias.

@ We face Bias-Variance trade-off

Can we do better?

Braghadeesh L, Sethupathy P (11Sc, Bangalot Adaptive LSTD May 30, 2020 3/35



TD(A)

@ TD(A) effectively overcomes the Bias-Variance trade off, by defining
A return

@ To handle large state space, we use linear function approximation of
value function

@ A return is given by Gt(/l) =(1-2) Z?L”_th;t+n
=1

Gt:t+n = Rt+1 + ?’Rt+2 +...+ Vnil V(5t+n) (1)
Z (1-A)A"t=1

@ Let T be the terminal time step. G, then becomes
A T-t-1
M =(1-2) Y A" G+ 2T 16| [3]
n=1
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TD(A)with Function Approximation

@ For state S; at time t, estimate of value function is
V(S:,0) =0T ¢(S:), where ¢(S;) is the feature vector of S;

0, 9(S;) e R?

o 0 is unknown. Estimate of V/(S;,8) <= Estimate of 8
How do we estimate 67

@ Use sampled transitions (S¢, A¢, Re41, St+1) observed till time t as
labels
@ Minimize Mean Squared Value Error (MSVE), given by

Y 11(s)(Va(s) = V(s.6))?

@ Solution: Stochastic Gradient Descent
0r11 = 6:+ (G} — V(5¢,6:))VV(S:, 6:)

Braghadeesh L, Sethupathy P (11Sc, Bangalot Adaptive LSTD May 30, 2020

ES



Forward View TD(A)

@ For linear function approximation, update rule becomes:
9t+1 = et + (X(G,_.}L — V(St, 9t))¢(5t) (2)

@ The forward view gives theoretical view of A return
@ One obviously cannot have n-step returns in hand to implement
TD(A).
How do we implement TD(A)?
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Backward View TD(A)

o Eligibility trace is used to implement TD(A) on-line

Zr=0(St), Ziy1=AYZe+ ¢(Se41) (3)

o On-line update: 6;y1 = 6; + @8;Z;, where ; is one step TD error
0t = Rer1+YV(St41,60:) — V(S:, 6:)

@ Total error in on-line updates is:

(Z (AP)*=t8)9(Se) = (G — V (S, 6:))9(St)
k=t
@ On-line update of TD(A) converges to fixed point solution, given by
d+c6, =0[2] (4)

where, d and c are:

d=E {éz,-/?,} (5)
T

c=E| Y a(0(5) ~0(5)| ©
i=0
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Merits and Demerits of TD(A)

@ Balances Bias-Variance trade off by “suitable” choice of A
@ Per step computation in the iterative update is less

@ Generalizes TD(0) and Monte-Carlo updates

v
Demerits

@ TD(A) is sensitive to the step size parameter o

@ TD(A) never make efficient use of data that it observed.

@ TD(A) is sensitive to |63 — Oiniriar|| [2]
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How to make efficient use of data?

Do sample mean estimate of d and ¢ over many trajectories

Calculate 6, for the obtained estimates.

By LLN, sample mean estimates converge to true mean with large
##trajectories

This gives rise to a new method, called Least Squares Temporal
Difference (LSTD(A)) and it depends on 4
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© LSTD(A)
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LSTD(A)

@ Unlike TD(A), LSTD(A) doesn't perform iterative update and discard
samples.

e LSTD(A) directly computes 6, from (4) by estimating c and d
e c is negative definite and hence ¢! exists.[1]

@ For A =1, the solution obtained from LSTD(1) is same as solution
obtained by linear regression.[2]

Have we solved Bias-Variance trade off?
Not Yet
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© LoTOo-Cv
@ Naive Implementation of LOTO-CV
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LOTO-CV

@ Recall: Mean Value Squared Error(MSVE)for the estimate of
unknown 0 is given by

Y 11(s)(Va(s) — 0(s) 7 6;)? ()

@ A controls 6

@ Solution to trade off : value of A € A C [0, 1] that achieves minimum

MSVE.
@ Denote the sample mean estimates of -c and d as Aj and b, given
by: [4]
AA—ZZz,tW,t bx—ZZz,tR,t (8)
i=1t= i=1t=
where
H
Zij = Z (AYY i ‘ Wie = (Xi,e — YXi,e+1) ‘ (9)
t=1
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LOTO-CV

LOTO-CV is used to find the best choices of A

LOTO-CV leaves out one trajectory and build sample mean estimates
of -c and d.

@ The above estimates are independent.
Total variance o« 1/# Trajectories

Fresh sample mean estimate of the above estimates is unbiased.

As #Trajectories is increased, we get low variance.
Tackled Bias-Variance trade off!!!
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LOTO-CV Implementation

@ Fix a single value A € [0,1]

AT
Ci= sz,twj,t (10)

H
Yi= Z Z Zj,tRj,t (11)

0, = Cfly; [4] (12)

(10) and (11) are the sample mean estimates of -c and d respectively,
by leaving out i trajectory. (12) gives the estimate of 6 for it
trajectory.
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LOTO-CV Implementation

@ For each trajectory i, LOTO-CV error, which is MSVE for that
trajectory, is calculated

1 H H 2
li = o Z <X;,Tt@i - Z?’JtRi,j) (13)

t=1 Jj=t

@ (10) can also be re-written as

H
C,' = A?L — ZZI';,LtWi-,I; (]_4)
t=1

o (14) suggest use of Recursive Sherman-Morrison Update to calculate
the inverse of C;
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RSM

Algorithm: RSM Update

1 Require: M, a dxd matrix, 2 = {(ur,v¢)}]_; a collection of 2T d
'dimensional column vectors

2 Mg+ M

3 fort=1,2,..., T do

Mt—lutVtTMt—l

1 + VtTMt71 ug

4 M(—Mtfl—

5 end
6 return Mt
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LOTO-CV Implementation

‘D———— Compute A4,,by || Compute Ox

|
o
No
|

~Compute Ci, 0,1

Yes
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LOTO-CV Implementation

o Naively, for each value in finite set of possible A € [0,1], Mean
LOTO-CV error is calculated.

@ Output A with least Mean LOTO-CV error

@ Naive implementation need inverse of A,, direct computation is
expensive
Can we do better?
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@ ALLSTD
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ALLSTD

@ A, can be re-written as:

n H

A, = Z Z u,',tv,-?—t + Ao (15)

i=1t=1

[4] where u; + = (Zi),Lt —xi¢)and Vi = (Xit — YXit+1)

(15) implies direct inverse computation can be avoided
@ Instead, use RSM update to compute inverse of A

@ For each A, the LOTO errors are computed.

Output A with least Mean LOTO-CV error

How is it different from Naive implementation?
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ALLSTD

For every A in finite set, we exhaustively search for A for which
LOTO error is minimum.

e Each search involves computation of A;!, which now can be
computed by RSM update

Lesser computational difficulties enable expansion of search space of A

o Naive LOTO-CV+LSTD takes O(kd®+ knHd?)

o ALLSTD takes only O(kd?+ knHd?)
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e Results
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Experiment Setup

We implemented Naive LOTO-CV+LSTD and ALLSTD on Mountain
Car, 2048 game and Random Walk environments.

We plotted the error plots of both the approaches vs #Trajectories
and A and compared them with TD.

We also plotted the error bar plots for better visualization.

@ For Mountain car setup: We took ¥y =1 and
For 2048 Random Walk setup : We took y = 0.95

#Trajectories € {10,20,30,40,50} and A € [0.2,0.4,0.6,0.8,1]

We followed policies mentioned in [4]
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Plots (Mountain Car Environment)
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(a) Error Plot for Naive (b) Error Plot for ALLSTD

Figure: Error Plots Mountain Car Environment
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Plots (Mountain Car Environment)
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Figure: Error Plots Mountain Car Environment
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Plots (2

48 Environment)
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(a) Error Plot for Naive (b) Error Plot for ALLSTD

Figure: Error Plots 2048 Environment
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Plots (2048 Environment)
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Figure: Error Plots 2048 Environment
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Plots (Random Walk Environment)

E 0s2s aszs
100 100
0300 aso0
oss ass
0ars asrs
o7e o7
oas0 asso
06 oer
oas e
goss 0400 gos s
o8t 0375 oss 0.37¢
033 0350 033 0350
022 0325 oz 0325
o o
on o o o
oi% [H
oo e AN P o'y
01 g0 D 08 & 115 5 D 08 &
25 25 30
55 10 ) 10
Hrajectories 0 %0 0w o5

(a) Error Plot for Naive (b) Error Plot for ALLSTD

Figure: Error Plots Random Walk Environment
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Plots (Random Walk Environment)
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Inference from Experiments

@ For Mountain car, Error is least for A =1 and highest for A << 1.

e For 2048 and Random Walk, Error is least for A << 1 and highest for
A=1

@ Irrespective of Environment, ALLSTD beats Naive LOTO-CV+LSTD
In time.

o Better error performance without knowledge of step size
parameter,unlike in TD(A)
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© Summary
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o Studied LSTD(A)
@ Learnt how LSTD(A) can be improved by choosing appropriate A
e Studied Naive way to improve LSTD(1)

@ Addressed the limitation in the Naive way i.e, LOTO-CV+LSTD(A)

Learnt how RSM update can overcome the computational difficulty

@ Successfully implemented the proposed ALLSTD algorithm
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