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Abstract— One of the most important problems in system
identification and statistics is how to estimate the unknown
parameters of a given model. Optimization methods and spe-
cialized procedures, such as Empirical Minimization (EM) can
be used in case the likelihood function can be computed. For
situations where one can only simulate from a parametric
model, but the likelihood is difficult or impossible to evaluate,
a technique known as the Two-Stage (TS) Approach can be
applied to obtain reliable parametric estimates. Unfortunately,
there is currently a lack of theoretical justification for TS. In
this paper, we propose a statistical decision-theoretical deriva-
tion of TS, which leads to Bayesian and Minimax estimators.
We also show how to apply TS on models for independent
and identically distributed samples, by computing quantiles of
the data as a first step, and using a linear function as the
second stage. The proposed method is illustrated via numerical
simulations.

Index Terms— Two-Stage approach, estimation theory, sta-
tistical decision theory.

I. INTRODUCTION

Engineering disciplines rely on mathematical models in
order to understand, modify and control physical systems.
To derive such models, practitioners utilize techniques from
several research fields, such as statistics [1], chemomet-
rics [2], econometrics [3], machine learning [4] and system
identification [5, 6], which build models based on data
gathered from a physical system.

Many models built from data are parametric statistical
models, i.e., they define (explicitly or implicitly) a probability
distribution that describes the observed data in terms of a
set of unknown parameters, which remain to be estimated.
Many techniques have been devised for estimating such pa-
rameters, including Maximum Likelihood [1, 7], Prediction
Error Methods [5], Instrumental Variables [8], Methods of
Moments [3], and so on. While some of these techniques
achieve statistical efficiency [1], their implementations have
several drawbacks: they may require having an explicit
expression for the likelihood function, solving non-convex
optimization problems, or that the distribution of the samples
has a very specific structure. To address some of these issues,
novel techniques have been introduced in econometrics and
identification, such as Indirect Inference and the Method
of Simulated Moments [9], and the Two-Stage (TS) Ap-
proach [10, 11].
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Out of these new methods, TS is an attractive alternative
to traditional parametric techniques, since it only requires
one to be able to simulate data for a fixed choice of the
parameters, and, by properly choosing its second stage, it
requires only solving convex optimization problems (thus
avoiding getting trapped into local optima). The TS approach
works by seeing the estimation problem as an inverse su-
pervised learning setup [4], where one simulates a large
number of samples for different values of the parameters,
and uses any supervised learning method to predict the values
of the parameters for a given data sample. The supervised
learning problem is decomposed into two stages, where the
first stage involves “compressing” the data into a small
set of values, and the second one uses such compressed
samples to “predict” the values of the parameters. In spite of
its advantages with respect to other approaches, however,
TS relies on several user choices, whose impact on the
performance of the method is not yet clear.

In this paper we provide a formalization of TS, by deriving
it within a statistical decision theory setup. This allows us to
note that the standard TS is actually a Bayes estimator (with
respect to a given prior on the parameters), and to extend the
approach to minimax decision rules. In addition, we focus
on the case of independent and identically distributed (i.i.d.)
data, for which we suggest a specific choice for its first (or
“compression”) and second stages, which leads to convex
optimization problems that can be efficiently solved using
off-the-shelf solvers.

In summary, the main contributions of this paper are:

• We provide a statistical decision-theoretical derivation
of TS, which leads to Bayes and minimax formulations,
and give a reason for decomposing the problem into two
stages;

• we suggest a specific structure for the second stage of
TS, which leads to simple convex programs for both
Bayes and minimax formulations;

• for i.i.d. data, we propose a specific choice for the first
stage of TS, based on sample quantiles of the data; and

• we illustrate the performance of the novel Bayes and
minimax TS formulations with a numerical example
based on a Weibull distribution.

The rest of this work is organized as follows. In Section II,
the statistical decision theory setup for parameter estimation
is presented. Section III briefly describes the procedure
of the TS approach. Section IV describes a computational
way to approximate Bayes and minimax estimators, and
explains their connection to TS. In Section V, the Bayes
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and minimax formulations of TS are specialized for i.i.d.
data. A simulation study assessing the performance of the
above formulations is presented in Section VI, and finally
conclusions are drawn in Section VII.

II. PROBLEM FORMULATION

Consider an environment, or data generating mechanism,
that produces a quantity y ∈ Y according to a probability
distribution P(y|θ) determined by an unknown parameter θ ∈
Θ ⊆ Rd, where d ≥ 1. Based on the value of y, the goal is
to design an estimator (or decision rule) δ : Y → Θ of the
true unknown parameter θ such that the risk

R(θ, δ) := Ey∼P(y|θ){L(θ, δ(y))} (1)

is minimized, where L : Θ × Θ → R+
0 is a loss function.

In other words, L(θ, δ(y)) is the loss of estimating the
parameter as δ(y) when its true value is θ. Since the risk
depends on θ, to evaluate the performance of estimators
δ(y), it is required to reduce the risk to a function that
depends only on δ. The notion of an “optimal” decision rule
is then defined with respect to this function. In this paper,
we consider the following types of optimal rules:

1) Bayes rules: Given a probability distribution P(θ) on
Θ, a decision rule δ∗Bayes is said to be a Bayes rule (with
respect to P(θ)) if it minimizes Eθ∼P(θ)[R(θ, δ)].

2) Minimax rules: A decision rule δ∗minimax is called a
minimax rule if it minimizes maxθ∈ΘR(θ, δ).

In some of the subsequent sections, we will consider the
case where y = (y1, . . . , yN ), i.e., y is a vector consisting
of multiple observations.

III. TS APPROACH

In this section, we summarise the working principle of
the TS approach; please refer to [10, 11] for details. The
TS approach works by posing the estimation problem as an
inverse supervised learning setup [4], where different values
of the unknown parameter, given by the set {θi}Mθ

i=1, are
drawn from a fixed prior, and for each θi, large number
of samples, represented by vector yi = (y1

i , . . . , y
N
i ) are

drawn. Thus, {(yi, θi)}Mθ
i=1 constitutes a training set. The

supervised learning problem is then decomposed into two
stages, where the first stage involves “compressing” the
data yi = (y1

i , . . . , y
N
i ) into a small set of values αi =

{α1
i , . . . , α

n
i }, where n � N , and the second one uses

such compressed samples on a supervised learning algorithm
(such as Kernel ridge regression, XGBoost, or Deep Neural
Networks) to train a model that can “predict” the values
of the parameters by minimizing the training error. This
trained model (including the compression stage) constitutes
the sought TS estimator.

IV. A STATISTICAL DECISION-THEORETICAL
FORMULATION OF TS

In this section, we will show how to derive, in a compu-
tational manner, Bayesian and minimax decision rules, and
describe their connection to the Two-Stage Approach.

A. Bayes estimator

Expanding the expression for R(θ, δ) in (1), we have

R(θ, δ) = Ey∼P(y|θ) [L (θ, δ(y))] =

∫
Y
L (θ, δ(y))P(y|θ) dy.

Now, we define weighted risk

Rweighted(δ) =

∫
Θ

R(θ, δ)π(θ) dθ, (2)

where π : Θ → R+
0 is a weighting function over Θ. Note

that π need not be a probability density function (pdf ) over
Θ, that is,

∫
Θ
π(θ)dθ does not need to be equal to 1 (or even

finite). However, if π(θ) = P(θ) happens to be a pdf over
Rd, then we obtain the definition of Bayes risk,

RBayes(δ) =

∫
Θ

R(θ, δ)P(θ) dθ, (3)

where P(θ) is called a prior on θ. The minimizer of RBayes
is called the Bayes rule associated with P(θ).

The standard approach to derive the Bayes rule is as
follows. We first expand (3):

RBayes(δ) =

∫
Θ

∫
Y
L (θ, δ(y))P(y|θ)P(θ) dydθ (4)

It is clear from (4) that, in order to minimize RBayes we have
to minimize the inner integral

∫
Θ
L(θ, δ(y))P(θ|y)dθ over

δ, since P(y) is non-negative. Therefore, the Bayes decision
rule is given by δ∗Bayes = arg minδ

∫
Θ
L(θ, δ(y))P(θ|y)dθ.

We now propose an alternative computational approach to
derive the Bayes rule associated with a prior P(θ), which
essentially corresponds to the TS method [10, 11]. To this
end,

RBayes(δ) ≈
∫

Θ

 1

My

My∑
j=1

L(θ, δ(yj))

P(θ) dθ. (5)

where y1, . . . ,yMy are independent random samples from
P(y|θ). We can further approximate the outer integral of
(5) by Monte-Carlo sampling, by taking Mθ independent
samples θ1, . . . , θMθ

from P(θ):

RBayes(δ) ≈
1

My

1

Mθ

Mθ∑
i=1

My∑
j=1

L(θi, δ(yij)), (6)

where {yij}
i.i.d.∼ P(y|θi) and {θi}

i.i.d.∼ P(θ), for i =
1, . . . ,Mθ and j = 1, . . . ,My.

From (6), it follows that one can approximate the Bayes
rule by solving the optimization problem

δ̃Bayes := arg min
δ∈∆

1

My

1

Mθ

Mθ∑
i=1

My∑
j=1

L(θi, δ(yij)), (7)

where ∆ is a suitable function space. If My, Mθ are
sufficiently large, and ∆ is sufficiently large, one should
expect that δ̃Bayes ≈ δ∗Bayes in a suitable sense.
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Choosing the function space

The next step is to choose a function space ∆. To this end,
notice that typically Y is a product space, i.e., Y = ỸN , so
that y ∈ Y is of the form y = (y1, . . . , yN )T , where yi ∈ Ỹ
(i = 1, . . . , N ) are the individual samples in the data, and
N is the sample size. Furthermore, P(y|θ) may also have
a product structure, i.e., if (y1, . . . , yN )T ∼ P(y|θ), then
yi

i.i.d.∼ P(ỹ|θ), or P(y|θ) may correspond to a segment of
a stationary distribution; in those cases, the measure P(y|θ)
may be subject to a measure concentration phenomenon [12],
which means that P(y|θ) may be highly concentrated on
a subset of Y . This implies that the decision rule δ∗Bayes
may be difficult to approximate using standard functional
approximation methods. To overcome this issue, we will add
the subscript N to δ, to emphasize the dependence of the
number of samples N , and express δN as the composition
of two functions,

δN = gN ◦ hN , (8)

where hN : Y → Rn and gN : Rn → Θ, with n � N . For
identifiability purposes [7], we require that N is larger than
n. Function h can be chosen as a fixed function (i.e., not
to be optimized with respect to) with the property that if
y ∼ P(y|θ), then hN (y)→ h̄(y) in probability as N →∞,
where h̄ : Y → Rn is differentiable and does not depend on
N . This means that the measure concentration of P(y|θ) as
N grows can be taken care of by hN , and if N is sufficiently
large, gN can be designed independently of N , i.e., gN ≡ g
for a fixed function g : Rn → Θ.

A possibility for hN is to use an estimator for a mis-
specified model of y, i.e., a model which is not related to
P(y|θ), but which is nevertheless easy to estimate (using, for
instance, least squares [1]). The value of hN (y) should serve
as a approximate sufficient statistic [13] for θ, in the sense
of containing, approximately, the same information about θ
as y. Notice also that this resembles the use of misspecified
models in techniques such as Indirect Inference [14].

Once hN is chosen, we are left with the problem of
determining g according to

g∗ = arg min
g∈G

1

My

1

Mθ

Mθ∑
i=1

My∑
j=1

L(θi, g(hN (yij))). (9)

Here, G is a function space that can be chosen according to
general functional approximation methods, such as deep neu-
ral networks, boosted decision trees, radial basis functions,
or finite dimensional function spaces (e.g., polynomials,
piecewise affine functions, . . . ).

Remark 4.1: Under i.i.d. or stationarity assumptions, if N
is sufficiently large, each sample will give a good estimate
of the loss (due to a concentration of measure), so we can
take My = 1 without significant loss in performance.

The approach given here to approximate δ∗Bayes is essen-
tially identical to the TS approach given in [10], where the
first stage consists in the computation of hN (yij) (called
the “compression stage”), and in the second stage g∗ is
determined. However, our formulation clarifies that the way

how the values of θ are sampled (via P(θ)) affects the
resulting estimate, which is in fact an approximate Bayes
estimator; for this reason, the estimator δ∗N will be called
the Bayes TS estimator of θ under the prior P(θ).

B. Minimax estimator

In this subsection we modify the previous formulation in
order to arrive at a minimax estimator, given by δ∗minimax =
arg minδ∈∆ [maxθ∈Θ R(θ, δ)] .

Let us rewrite the inner optimization problem
maxθ∈ΘR(θ, δ) as

max
θ∈Θ

R(θ, δ) = max
π∈P(Θ)

∫
Θ

R(θ, δ)π(θ) dθ, (10)

where P(Θ) is the space of probability distributions in Θ,
and π(·) can be interpreted as a prior distribution on θ.

δ∗minimax = min
δ∈∆

max
π∈P(Θ)

∫
Θ

∫
Y
L (θ, δ(y))P(y|θ) dyπ(θ) dθ,

(11)

assuming that we can interchange the integrals in (11).
Using Monte-Carlo sampling, we approximate (11) to

obtain the following optimization problem

min
δ∈∆

max
π∈P(Θ)

∫
Θ

 1

My

My∑
j=1

L(θ, δ(yj,θ))

π(θ) dθ, (12)

where {yj,θ}
i.i.d.∼ P(y|θ) for a fixed θ, and My is the

number of samples generated according to P(y|θ).
In contrast to Bayes rules, we will now apply importance

sampling [15] to further approximate the integral in (12).
Notice that the optimization problem in (12) involves a
maximization over π ∈ P(Θ). If we used Monte-Carlo
sampling instead, then we would need to fix π, and for
each choice of π we would need to generate samples of θ
according to π; finally, we would have to find the value of π
for which the approximate Monte-Carlo sum is a maximum
for a fixed choice of δ. This is computationally tedious.
An alternative approach, through Importance Sampling, is
to fix a distribution s(θ), called a proposal distribution (to
be decided by a user) from which we can sample values
of θ. We use these samples to approximate the integral in
(12) by employing self-normalized importance sampling [15,
Chapter 9, page 8] as

min
δ∈∆

max
w1,...,wMθ∈R

1

My

1

Mθ

My∑
j=1

Mθ∑
i=1

L(θi, δ(yij))wi

s.t wi ≥ 0, i = 1, . . . ,Mθ (13)
Mθ∑
i=1

wi = 1,

where yij = yj,θi , wi =
π(θi)/s(θi)∑Mθ

k=1 π(θk)/s(θk)
, and {θi}

i.i.d.∼

s(θ).
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Furthermore, we can notice that the inner maximization
problem takes place over a probability simplex, so the
maximum is obtained by assigning probability mass 1 to
maxi=1,...,Mθ

Li(δ). Therefore, by using the epigraph for-
mulation of the optimization problem [16, page 134], one
can show that (13) is equivalent to

min
δ∈∆,t∈R

t

s.t. Li(δ) ≤ t, i = 1, . . . ,Mθ.
(14)

The form of the decision rule δ can be taken, as in the
Bayesian case, as δ = g ◦ hN (cf. (8)). Due to its similarity
to TS, we will call it the minimax TS estimator.

Finally, we will consider a very special case of the
minimax TS estimator, where d = 1, the loss function is
the mean square error L(θ, θ̂) = (θ − θ̂)2, where θ̂ is an
estimate of θ and g is a linear function1; furthermore, we
assume that y is a vector of i.i.d. or stationarity entries,
so by Remark 4.1 we take My = 1. These restrictions
will allow us to derive an explicit computation procedure
for the second stage. In this case, Li(δ) = L(θi, δ(yi1)).
Furthermore, δ(yi1) = βTφ(αi), where the vector αi ∈ Rn
contains the compressed data obtained in the first stage of
TS, φ(·) is a fixed non-linear function φ : Rn → Rm with
n < m < N and β ∈ Rn is the linear regression coefficient
vector that describes the linear function in the second stage
of TS. Then, we obtain the following optimization problem

min
β∈Rn,t∈R

t

s.t. βT
(
φ(αi)φ(αi)

T
)
β − 2θiφ(αi)

Tβ + θ2
i ≤ t,

i = 1, . . . ,Mθ.
(15)

This optimization problem can be solved using a standard
convex programming solver, such as CVXPY [17].

V. TWO-STAGE APPROACH FOR I.I.D. DATA

The formulations of TS given in Section IV make no
special assumptions on the distribution of the data y. In this
section, we assume that y is a vector whose entries, {yi},
are i.i.d. according to distribution f(θ), where f(θ) is a pdf
parameterized by θ ∈ Θ.

To properly account for the i.i.d. assumption, we notice
that under it, reasonable decision rules are “permutation-
invariant” [7], that is, their output should not vary if the en-
tries of y are permuted. Such decision rules can be shown [7]
to be functions of the order statistics of y1, . . . , yN , which
correspond to the values of y1, . . . , yN sorted in ascending
order, and are denoted by y(1), . . . , y(N).

We suggest to compress the data starting from the order
statistics. To this end, we will use some quantiles of the order
statistics: If 0 < p < 1, then the (100p)-th sample quantile
is a linear interpolation between y(Np) and y(N(1−p)). The
computation of a small and fixed number of quantiles as the
compressed data constitutes the first stage of TS, and the
description of the first stage is given below.

1This special case can be easily extended to more than one parameter,
i.e., d > 1, by applying TS to estimate each parameter separately.

A. First Stage

For the first stage, we set p = k/n, where k = 1, . . . , n,
and obtain n quantiles. We then collect those quantiles into
the compressed n-dimensional real-valued column vector
α = (α1, . . . , αn)T . The first stage for both Bayes TS and
minimax TS is the same.

B. Second stage

For both formulations, the second stage starts by construct-
ing non-linear features φ(α) using the compressed data α and
a fixed non-linear function φ : Rn → Rm with n < m < N .
The function φ must be chosen by the user, and it depends
on the type of parameter(s) that we want to estimate. In
both formulations, we then design g as a linear function in
composition with φ, i.e., as g(α) = βTφ(α), where β is
determined as explained in Section IV. If θ = (θ1, . . . , θd)

T ,
where d > 1, is the parameter vector to be estimated, then
we can design a separate estimator gi(α) = βi

Tα for each
i = 1, . . . , d. To avoid numerical issues, in both Bayes and
minimax formulations we add a regularization term of the
form λ‖β‖22 to the optimization problem to be solved, where
λ > 0 is a very small number (e.g., 10−8).

Remark 5.1: Both n and φ(·) are user choices, which need
to be selected according to the specific estimation problem.

VI. SIMULATIONS

In this section, we illustrate the performance of the Bayes
and minimax estimators derived in Section IV on the estima-
tion of the two parameters of a Weibull distribution. Weibull
distributions are widely used in reliability engineering [18,
19] to model the probability of failure of an equipment
at a particular age, and are parameterized by: (i) a scale
parameter, denoted by η > 0, and (ii) a shape parameter,
denoted by γ > 0. Here, η and γ are unknown. Hence,
this is a two dimensional parameter estimation problem, with
θ = (η, γ)T being the unknown parameter. As described in
Section V-B, we design separate estimators for η and γ,
which are denoted by η̂ and γ̂ respectively.

The Weibull probability density function is

f(A) =
γ

η

(
A

η

)γ−1

exp

[
−
(
A

η

)γ]
, A ≥ 0. (16)

We follow the TS approach described in Section V, where
for the first stage we consider n = 10 quantiles, and for the
second stage, we choose φ(α) according to the following:
• For scale parameter η,

φi(α) =

αi, if 1 ≤ i ≤ n
αi−n+1

α1
, if n+ 1 ≤ i ≤ 2n− 1.

(17)

The reason for choosing these combinations of quan-
tiles to estimate η is that quotients of the (theoretical)
quantiles of a distribution are proportional to its scale
parameter (when the other parameters are kept fixed),
which suggests that the quantities φi(α) above can be
used for estimating η.
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• For shape parameter γ, let

ψj(α) =

αj , if 1 ≤ j ≤ n
αj−n
αn

, if n+ 1 ≤ j ≤ 2n− 1.
(18)

We let φ(α) consist of monomials of the ψj(α)’s up to
order 2. This choice is suggested by the fact that a small
increase in γ (for γ > 1) leads to a similar change of
the Weibull distribution as a small decrease in η.

We should remark that for the Weibull distribution there
exist exact expressions for η and γ in terms of any two
quantiles [20]. However, using such expressions together
with sample quantiles may lead to sub-optimal estimates,
since they ignore the variability of the sample quantiles.

We will now look at results corresponding to both Bayes
and minimax frameworks that we discussed in Section IV.

A. Bayes estimator

To illustrate the Bayes TS approach of Section IV-A, we
study the effect of choosing different priors for the parameter
θ. In particular, two choices of prior are considered:

1) Independent uniform priors U [1, 20] for η and γ.
2) Independent uninformative priors for η and γ with

density [21]

f(x) =

{ c
x
, if a ≤ x ≤ b

0, otherwise,
(19)

where c = 1/ ln(b/a). Here, we take a = 1 and b = 20
for both η and γ.

For each of the above priors, we find the Bayes TS
estimator by drawing Mθ = 1000 values of θ = (η, γ)T

(i.e., 1000 values of η and γ) independently. For each
sample of θ, N = 10000 observations y1, . . . , yN are drawn
according to the Weibull distribution parameterized by θ.
Once an estimator is found for each of the above priors, we
evaluate its performance by drawing Mtest = 1000 values of
θ = (η, γ)T (different from those used to find the estimator),
and for each sample of θ, N = 10000 observations are drawn
according to the Weibull distribution parameterized by θ.

We show a scatter plot of estimated values of η and γ vs.
their true values in Figures 1 - 4. Figures 1 and 2 correspond
to uniform prior, whereas Figures 3 and 4 correspond to the
uninformative prior given by (19).

B. Minimax estimator

To illustrate the minimax TS approach of Section IV-B, we
find it by drawing Mθ = 1000 values of θ = (η, γ)T inde-
pendently from a proposal uniform U [1, 20] distribution. For
each sample of θ, N = 10000 observations y1, . . . , yN are
drawn according to the Weibull distribution parameterized by
θ. Once the estimator is found, we evaluate its performance
by drawing Mtest = 1000 new values of θ = (η, γ)T , and
for each sample of θ, N = 10000 observations are drawn
according to the Weibull distribution parameterized by θ. We
show the scatter plot of estimated values of η and γ vs. their
true values in Figures 5 and 6.
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Fig. 1: Scatter plot (blue dots) of Bayes TS estimates of η vs. its true value
for a uniform prior. The red dashed line corresponds to an oracle estimate,
which knows the true value of the parameter.
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Fig. 2: Scatter plot (blue dots) of Bayes TS estimates of γ vs. its true value
for a uniform prior. The red dashed line corresponds to an oracle estimate,
which knows the true value of the parameter.

To assess the quality of the Bayes and minimax TS
estimators of η and γ, we have numerically evaluated the
mean square error (MSE) of the TS estimators, based on
1000 Monte Carlo simulations, and compared them with
a numerical evaluation of their corresponding Cramér-Rao
lower bounds (CRLB) [22]. The results are shown in Table I.

It is evident from Figures 1 - 6 that the estimates given by
both Bayes and minimax TS estimators of the scale (η) and
shape (γ) parameters are close to the true values. However,
according to Table I, the TS estimates of η are fairly efficient
(in the sense that their MSE is close to CRLB), while those
of γ are not as reliable. The reason for the latter lies in the
choice of the function φ for γ. Also, one can see from Table I
the effect of changing priors in the Bayes estimator: For
the uninformative priors, estimates of η and γ are relatively
much closer to true values than for the uniform priors. It
is also interesting to note that, while no prior is needed for
the minimax estimator, one can still get reliable estimates, as
demonstrated in Figures 5 and 6. By more careful “feature
engineering” of φ in the second stage for γ̂, we could obtain
more reliable estimates of the shape parameter without using
more complex functional approximators such as Deep Neural
Networks. How to perform such feature engineering, based
on a theoretical analysis of our novel TS estimators, is left
for future research.

VII. CONCLUSIONS

In this paper, we provided a decision-theoretical frame-
work for the Two-Stage paradigm to estimate the parameters
of a data generating model. In particular, we have derived
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True Values CRLB MSE, Bayesian (Uniform Prior) MSE, Bayesian (Uninformative Prior) MSE, Minimax
η γ η γ η̂ γ̂ η̂ γ̂ η̂ γ̂

2 2 1.11× 10−4 2.43× 10−4 2.58× 10−4 5.77× 10−2 1.42× 10−4 2.06× 10−2 2.17× 10−4 16× 10−2

2 8 6.93× 10−6 3.89× 10−3 1.11× 10−5 5.61× 10−2 1.27× 10−5 4.44× 10−2 4.28× 10−4 13.29× 10−2

4 2 4.43× 10−4 2.43× 10−4 6.74× 10−4 1.05× 10−1 6.07× 10−4 2.43× 10−2 8.38× 10−4 14.67× 10−2

4 8 2.77× 10−5 3.89× 10−3 3.84× 10−5 6.40× 10−2 4.33× 10−5 3.96× 10−2 1.72× 10−3 8.59× 10−2

8 2 1.77× 10−3 2.43× 10−4 2.26× 10−3 1.89× 10−1 2.27× 10−3 2.35× 10−2 3.307× 10−3 18.605× 10−2

8 8 1.11× 10−4 3.89× 10−3 1.58× 10−4 7.901× 10−2 1.76× 10−4 4.51× 10−2 6.77× 10−3 8.39× 10−2

TABLE I: MSE of Bayes and minimax TS estimators of the scale and shape parameters, and their corresponding CRLBs.
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Fig. 3: Scatter plot (blue dots) of Bayes TS estimates of η vs. its true value
for an uninformative prior. The red dashed line corresponds to an oracle
estimate, which knows the true value of the parameter.
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Fig. 4: Scatter plot (blue dots) of Bayes TS estimates of γ vs. its true value
for an uninformative prior. The red dashed line corresponds to an oracle
estimate, which knows the true value of the parameter.

Bayes and minimax formulations of TS, and showed how
to implement them for i.i.d. data, by considering nonlinear
functions of the sample quantiles of the data as a first stage,
and then optimizing for a linear function as the second
stage. We have also evaluated the performance of these novel
estimators on simulated data from a Weibull distribution.
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