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Introduction

▶ Parameter estimation: approximating the unknown parameters of a
mathematical model describing a real phenomenon

▶ Two-Stage (TS) approach: one of the methods of estimating unknown
parameters
• An inverse supervised learning setup
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Introduction

▶ Advantages of TS:

• No explicit likelihood computation
• Final estimation problem can be a simple convex optimization program

▶ However, there is a lack of theoretical justification for TS approach

Our Contribution
Constructed statistical framework to justify the working principle of TS approach

▶ Assumption: Data generation is an independent and identically distributed
(i.i.d.) process.
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Problem Statement

(Data)

Data generating mechanism (Simulator)
Decision rule

Parameter space (known)

Unknown parameter

Loss function

Risk:

Goal
Design optimal decision rules that minimize R(θ, δ)

▶ Bayes estimator: Minimize Eθ∼π[R(θ, δ)]
▶ Minimax estimator: Minimize maxθ∈Θ R(θ, δ)
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Two-Stage Approach

▶ Proposed by S. Garatti and S. Bittanti. “Estimation of white-box model
parameters via artificial data generation: a two-stage approach”. In: IFAC
Proceedings Volumes 41.2 (2008), pp. 11409–11414

Two Stage Approach
First stage: data compression Second stage: function approximation

Simulation

▶ θ̂i = g(h(y(i))): estimates of θi for i = 1, . . . ,M

▶ h is fixed and g is chosen from function space G to minimize the training
error
▶ g∗ = argmin

g∈G

1
My

1
Mθ

∑Mθ
i=1

∑My
j=1 L(θi, g(h(y

(i)
j )))

▶ G can be a linear regressor, deep neural network, gradient boosted regression
tree, etc.
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Bayesian Framework for Two-Stage Approach

▶ Assume a prior π over Θ

▶ Bayes risk:

RBayes(δ) =

∫
Θ

R(θ, δ)π(θ) dθ

=

∫
Θ

[∫
Y
L(θ, δ(y))P(y|θ)dy

]
π(θ)dθ︸ ︷︷ ︸

can be approximated by a Monte-Carlo sum!

▶ Approximate Bayes risk:

RBayes(δ) ≈
1
My

1
Mθ

∑Mθ

i=1

∑My
j=1 L(θi, δ(y

(i)
j ))

Goal
Find δ that minimize RBayes(δ)
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Bayesian Framework for Two-Stage Approach

▶ Caveat: P(y|θ) may be subject to a measure concentration phenomenon.
(P(y|θ) may be concentrated over a small subset of RN)

▶ Standard function approximation would require highly complex models.

Solution
Suitable decomposition of δ as g ◦ h.
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Bayesian Framework for Two-Stage Approach

▶ Final approximate Bayes risk:

1
My

1
Mθ

Mθ∑
i=1

My∑
j=1

L(θi, g(h(y
(i)
j ))).

▶ By fixing h, we obtain δ̃Bayes by solving for g

g∗ = argmin
g∈G

1
My

1
Mθ

Mθ∑
i=1

My∑
j=1

L(θi, g(h(y
(i)
j ))).

Bayes TS estimator!
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Minimax Framework for Two-Stage Approach

▶ Minimax risk:

Rminimax(δ) = max
θ∈Θ

R(θ, δ)

Goal
Find δ that minimize Rminimax(δ)

max
θ∈Θ

R(θ, δ) = max
θ∈Θ

∫
Y L (θ, δ(y))P(y|θ)dy
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Minimax Framework for Two-Stage Approach
▶ Caveat: Θ could be potentially infinite!

▶ How to make approximate minimax optimization tractable?

Solution
Scenario approach (Calafiore and Campi, 2006)

▶ Sample θi
i.i.d.∼ s(θ), i = 1, . . . ,Mθ

▶ Tractable optimization problem:

min
δ∈∆

max
i=1,...,Mθ

Li(δ)

Li(δ) =
∑My

j=1 L(θi, δ(yij)), yij = yj,θi
▶ Epigraph formulation:

min
δ∈∆,t∈R

t

s.t. Li(δ) ≤ t, i = 1, . . . ,Mθ.

Solved using CVXPY!

Braghadeesh Lakshminarayanan 13
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Choice of First Stage

▶ A fixed number of quantiles of the order statistic is taken as the
compressed data.
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Choice of First Stage

▶

y1
...
yN



sort−−→

y(1)
...

y(N)


︸ ︷︷ ︸

order statistic

every qth quantile−−−−−−−−→


y(1)
y( Nq )
y( 2N

q )

...
y(N)


︸ ︷︷ ︸

compressed data

= (α1, . . . , αn)
T

▶ Compressed data: α := (α1, . . . , αn)
T , where αis are quantiles in

increasing order.
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Choice of Second Stage

▶ Construct non-linear features ϕ(α)

▶ α is the compressed data from first stage

▶ ϕ is a non-linear function ϕ : Rn → Rm with n < m ≪ N

▶ Deploy linear regression with ϕ(α) as features

▶ Both n and ϕ(·) are user choices
▶ Selected according to the specific estimation problem.
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Algorithm: Bayes Two-Stage Estimator

Training

Prior π

Sample θi ∼ π
i = 1, . . . ,Mθ

Generate y(i)1 , . . . , y(i)N
i.i.d.∼ P(·|θi)

Compress
{y(i)1 , . . . , y(i)N } → α(i) = {y(i)1 , . . . , y(i)n }

Construct ϕ(α(i))

Train linear regressor with
{ϕ(α(i)), θi}Mθ

i=1

β
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Algorithm: Bayes Two-Stage Estimator

Estimation

π, β
Sample θi ∼ π
i = 1, . . . ,Mtest

Generate y(i)1 , . . . , y(i)N
i.i.d.∼ P(·|θi)

Compress
{y(i)1 , . . . , y(i)N } → α(i) = {y(i)1 , . . . , y(i)n }

Construct ϕ(α(i))

θ̂l = βTϕ(α(l))
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Algorithm: Minimax Two-Stage Estimator

Training

Proposal S Sample θi ∼ S
i = 1, . . . ,Mθ

Generate y(i)1 , . . . , y(i)N
i.i.d.∼ P(·|θi)

Compress
{y(i)1 , . . . , y(i)N } → α(i) = {y(i)1 , . . . , y(i)n }

Construct ϕ(α(i))

Solve the mimimax optimization program:
min

β∈Rn,t∈R
t

s.t. (θi − βTϕ(α(i)))
2 ≤ t

i = 1, . . . ,Mθ

β
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Algorithm: Minimax Two-Stage Estimator

Estimation

S, β
Sample θl ∼ S
i = 1, . . . ,Mtest

Generate y(l)1 , . . . , y(l)N
i.i.d.∼ P(·|θi)

Compress
{y(l)1 , . . . , y(l)N } → α(l) = {y(l)1 , . . . , y(l)n }

Construct ϕ(α(l))
θ̂l = βTϕ(α(l))
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Example
▶ Aim: To estimate scale (η) and shape (γ) parameters of Weibull process:

f(A) =
γ

η

(
A
η

)γ−1

exp

[
−
(
A
η

)γ]
, A ≥ 0.

▶ Mθ = 1000, N = 10000, n = 10, and Mtest = 1000

▶ Choice of ϕ:
▶ Scale:

ϕi(α) =

αi, if 1 ≤ i ≤ n
αi−n+1

α1
, if n+ 1 ≤ i ≤ 2n− 1.

▶ Shape: Let

ψj(α) =

αj, if 1 ≤ j ≤ n
αj−n

αn
, if n+ 1 ≤ j ≤ 2n− 1.

• ϕ(α) consist of monomials of the ψj(α)’s up to order 2
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Example

Bayes Two-Stage estimator

• Independent priors U [1, 20] for η and γ

Scale

5 10 15 20
True Parameter

5

10

15

20

E
st
im

at
ed

P
ar
am

et
er

Shape

5 10 15 20
True Parameter

0

5

10

15

20

E
st
im

at
ed

P
ar
am

et
er
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Example

• Independent uninformative priors for η and γ

f(x) =


1

log b
a

x
, if a ≤ x ≤ b

0, otherwise
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Example

Minimax Two-Stage Estimator

• Proposal distribution S: U [1, 20]
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Conclusion

▶ Provided statistical decision-theoretical derivation of TS that leads to
Bayes and minimax formulations

▶ Suggested a specific structure for the second stage of TS, which leads to
simple convex programs for both Bayes and minimax formulations

▶ Illustrated the performance of the novel Bayes and minimax TS
formulations
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Thank You
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Appendix: CRLB-MSE Comparison

True Values CRLB MSE, Bayesian (Uniform Prior) MSE, Bayesian (Uninformative Prior) MSE, Minimax
η γ η γ η̂ γ̂ η̂ γ̂ η̂ γ̂

2 2 1.11 × 10−4 2.43 × 10−4 2.58 × 10−4 5.77 × 10−2 1.42 × 10−4 2.06 × 10−2 2.17 × 10−4 16 × 10−2

2 8 6.93 × 10−6 3.89 × 10−3 1.11 × 10−5 5.61 × 10−2 1.27 × 10−5 4.44 × 10−2 4.28 × 10−4 13.29 × 10−2

4 2 4.43 × 10−4 2.43 × 10−4 6.74 × 10−4 1.05 × 10−1 6.07 × 10−4 2.43 × 10−2 8.38 × 10−4 14.67 × 10−2

4 8 2.77 × 10−5 3.89 × 10−3 3.84 × 10−5 6.40 × 10−2 4.33 × 10−5 3.96 × 10−2 1.72 × 10−3 8.59 × 10−2

8 2 1.77 × 10−3 2.43 × 10−4 2.26 × 10−3 1.89 × 10−1 2.27 × 10−3 2.35 × 10−2 3.307 × 10−3 18.605 × 10−2

8 8 1.11 × 10−4 3.89 × 10−3 1.58 × 10−4 7.901 × 10−2 1.76 × 10−4 4.51 × 10−2 6.77 × 10−3 8.39 × 10−2

Table: MSE of Bayes and minimax TS estimators of the scale and shape parameters, and
their corresponding CRLBs.
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Appendix: Minimax TS Estimator for Weibull Process

▶ Proposal distribution S: U [1, 20];
True distribution of θ:

f(θ) =


1

log b
a

θ
, if a ≤ θ ≤ b

0, otherwise

where a = 1, b = 20

▶ d=3; n=5
Scale Shape
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