A Statistical Decision Theoretical Perspective on Two-Stage Approach to Parameter Estimation

Braghadeesh Lakshminarayanan and Cristian R. Rojas

Division of Decision and Control Systems, KTH Royal Institute of Technology,

Stockholm, Sweden
61st IEEE CDC, Cancun
December 8, 2022

Outline

Introduction

Two-Stage Approach

Statistical Decision Theoretical Perspective Bayesian Framework for Two-Stage Approach Minimax Framework for Two-Stage Approach Choice of First Stage and Second Stage

Example

Conclusion

Outline

Introduction

Two-Stage Approach

Statistical Decision Theoretical Perspective
Bayesian Framework for Two-Stage Approach
Minimax Framework for Two-Stage Approach Choice of First Stage and Second Stage

Example

Conclusion

Introduction

- Parameter estimation: approximating the unknown parameters of a mathematical model describing a real phenomenon

Introduction

- Parameter estimation: approximating the unknown parameters of a mathematical model describing a real phenomenon
- Two-Stage (TS) approach: one of the methods of estimating unknown parameters

Introduction

- Parameter estimation: approximating the unknown parameters of a mathematical model describing a real phenomenon
- Two-Stage (TS) approach: one of the methods of estimating unknown parameters
- An inverse supervised learning setup

Introduction

- Parameter estimation: approximating the unknown parameters of a mathematical model describing a real phenomenon
- Two-Stage (TS) approach: one of the methods of estimating unknown parameters
- An inverse supervised learning setup

Estimation phase

Introduction

- Advantages of TS:

Introduction

- Advantages of TS:
- No explicit likelihood computation
- Final estimation problem can be a simple convex optimization program

Introduction

- Advantages of TS:
- No explicit likelihood computation
- Final estimation problem can be a simple convex optimization program
- However, there is a lack of theoretical justification for TS approach

Introduction

- Advantages of TS:
- No explicit likelihood computation
- Final estimation problem can be a simple convex optimization program
- However, there is a lack of theoretical justification for TS approach

Our Contribution

Constructed statistical framework to justify the working principle of TS approach

Introduction

- Advantages of TS:
- No explicit likelihood computation
- Final estimation problem can be a simple convex optimization program
- However, there is a lack of theoretical justification for TS approach

Our Contribution

Constructed statistical framework to justify the working principle of TS approach

- Assumption: Data generation is an independent and identically distributed (i.i.d.) process.

Problem Statement

$\theta \in \underbrace{\Theta}_{\downarrow} \subseteq \mathbb{R}^{d}$
Parameter space (known)

Problem Statement

Data generating mechanism (Simulator)

$\theta \in \Theta \subseteq \mathbb{R}^{d}$
Parameter space (known)

$$
\text { Risk: } R(\theta, \delta):=\mathbb{E}_{y \sim \mathbb{P}(y \mid \theta)}[L(\theta, \widehat{\theta})]
$$

Problem Statement

Data generating mechanism (Simulator)

$\theta \in \Theta \subseteq \mathbb{R}^{d}$
Parameter space (known)

Goal

Design optimal decision rules that minimize $R(\theta, \delta)$

Problem Statement

Data generating mechanism (Simulator)

Parameter space (known)

Goal

Design optimal decision rules that minimize $R(\theta, \delta)$

- Bayes estimator: Minimize $\mathbb{E}_{\theta \sim \pi}[R(\theta, \delta)]$

Problem Statement

Data generating mechanism (Simulator)

Parameter space (known)

Goal

Design optimal decision rules that minimize $R(\theta, \delta)$

- Bayes estimator: Minimize $\mathbb{E}_{\theta \sim \pi}[R(\theta, \delta)]$
- Minimax estimator: Minimize $\max _{\theta \in \Theta} R(\theta, \delta)$

Outline

Introduction

Two-Stage Approach

Statistical Decision Theoretical Perspective
Bayesian Framework for Two-Stage Approach
Minimax Framework for Two-Stage Approach
Choice of First Stage and Second Stage

Example

Conclusion

Two-Stage Approach

- Proposed by S. Garatti and S. Bittanti. "Estimation of white-box model parameters via artificial data generation: a two-stage approach". In: IFAC Proceedings Volumes 41.2 (2008), pp. 11409-11414

Two-Stage Approach

- Proposed by S. Garatti and S. Bittanti. "Estimation of white-box model parameters via artificial data generation: a two-stage approach". In: IFAC Proceedings Volumes 41.2 (2008), pp. 11409-11414

- $\hat{\theta}_{i}=g\left(h\left(\mathbf{y}^{(i)}\right)\right)$: estimates of θ_{i} for $i=1, \ldots, M$

Two-Stage Approach

- Proposed by S. Garatti and S. Bittanti. "Estimation of white-box model parameters via artificial data generation: a two-stage approach". In: IFAC Proceedings Volumes 41.2 (2008), pp. 11409-11414

- $\hat{\theta}_{i}=g\left(h\left(\mathbf{y}^{(i)}\right)\right)$: estimates of θ_{i} for $i=1, \ldots, M$
- h is fixed and g is chosen from function space G to minimize the training error

Two-Stage Approach

- Proposed by S. Garatti and S. Bittanti. "Estimation of white-box model parameters via artificial data generation: a two-stage approach". In: IFAC Proceedings Volumes 41.2 (2008), pp. 11409-11414

- $\hat{\theta}_{i}=g\left(h\left(\mathbf{y}^{(i)}\right)\right)$: estimates of θ_{i} for $i=1, \ldots, M$
- h is fixed and g is chosen from function space G to minimize the training error
- $g^{*}=\underset{g \in G}{\arg \min } \frac{1}{M_{y}} \frac{1}{M_{\theta}} \sum_{i=1}^{M_{\theta}} \sum_{j=1}^{M_{y}} L\left(\theta_{i}, g\left(h\left(y_{j}^{(i)}\right)\right)\right)$

Two-Stage Approach

- Proposed by S. Garatti and S. Bittanti. "Estimation of white-box model parameters via artificial data generation: a two-stage approach". In: IFAC Proceedings Volumes 41.2 (2008), pp. 11409-11414

- $\hat{\theta}_{i}=g\left(h\left(\mathbf{y}^{(i)}\right)\right)$: estimates of θ_{i} for $i=1, \ldots, M$
- h is fixed and g is chosen from function space G to minimize the training error
- $g^{*}=\underset{g \in G}{\arg \min } \frac{1}{M_{y}} \frac{1}{M_{\theta}} \sum_{i=1}^{M_{\theta}} \sum_{j=1}^{M_{y}} L\left(\theta_{i}, g\left(h\left(y_{j}^{(i)}\right)\right)\right)$
- G can be a linear regressor, deep neural network, gradient boosted regression tree, etc.

Outline

Introduction

Two-Stage Approach

Statistical Decision Theoretical Perspective Bayesian Framework for Two-Stage Approach Minimax Framework for Two-Stage Approach Choice of First Stage and Second Stage

Example

Conclusion

Bayesian Framework for Two-Stage Approach

- Assume a prior π over Θ

Bayesian Framework for Two-Stage Approach

- Assume a prior π over Θ
- Bayes risk:

$$
R_{\text {Bayes }}(\delta)=\int_{\Theta} R(\theta, \delta) \pi(\theta) d \theta
$$

Bayesian Framework for Two-Stage Approach

- Assume a prior π over Θ
- Bayes risk:

$$
\begin{aligned}
R_{\text {Bayes }}(\delta) & =\int_{\Theta} R(\theta, \delta) \pi(\theta) d \theta \\
& =\underbrace{\int_{\Theta}\left[\int_{\mathcal{Y}} L(\theta, \delta(y)) \mathbb{P}(y \mid \theta) d y\right] \pi(\theta) d \theta}_{\text {can be approximated by a Monte-Carlo sum! }}
\end{aligned}
$$

Bayesian Framework for Two-Stage Approach

- Assume a prior π over Θ
- Bayes risk:

$$
\begin{aligned}
R_{\text {Bayes }}(\delta) & =\int_{\Theta} R(\theta, \delta) \pi(\theta) d \theta \\
& =\underbrace{\int_{\Theta}\left[\int_{\mathcal{Y}} L(\theta, \delta(y)) \mathbb{P}(y \mid \theta) d y\right] \pi(\theta) d \theta}_{\text {can be approximated by a Monte-Carlo sum! }}
\end{aligned}
$$

- Approximate Bayes risk:

$$
R_{\mathrm{Bayes}}(\delta) \approx \frac{1}{M_{y}} \frac{1}{M_{\theta}} \sum_{i=1}^{M_{\theta}} \sum_{j=1}^{M_{y}} L\left(\theta_{i}, \delta\left(y_{j}^{(i)}\right)\right)
$$

Bayesian Framework for Two-Stage Approach

- Assume a prior π over Θ
- Bayes risk:

$$
\begin{aligned}
R_{\text {Bayes }}(\delta) & =\int_{\Theta} R(\theta, \delta) \pi(\theta) d \theta \\
& =\underbrace{\int_{\Theta}\left[\int_{\mathcal{Y}} L(\theta, \delta(y)) \mathbb{P}(y \mid \theta) d y\right] \pi(\theta) d \theta}_{\text {can be approximated by a Monte-Carlo sum! }}
\end{aligned}
$$

- Approximate Bayes risk:

$$
R_{\text {Bayes }}(\delta) \approx \frac{1}{M_{y}} \frac{1}{M_{\theta}} \sum_{i=1}^{M_{\theta}} \sum_{j=1}^{M_{y}} L\left(\theta_{i}, \delta\left(y_{j}^{(i)}\right)\right)
$$

Goal

Find δ that minimize $R_{\text {Bayes }}(\delta)$

Bayesian Framework for Two-Stage Approach

- Caveat: $\mathbb{P}(y \mid \theta)$ may be subject to a measure concentration phenomenon. $\left(\mathbb{P}(y \mid \theta)\right.$ may be concentrated over a small subset of $\left.\mathbb{R}^{N}\right)$

Bayesian Framework for Two-Stage Approach

- Caveat: $\mathbb{P}(y \mid \theta)$ may be subject to a measure concentration phenomenon. $\left(\mathbb{P}(y \mid \theta)\right.$ may be concentrated over a small subset of $\left.\mathbb{R}^{N}\right)$
- Standard function approximation would require highly complex models.

Bayesian Framework for Two-Stage Approach

- Caveat: $\mathbb{P}(y \mid \theta)$ may be subject to a measure concentration phenomenon. $\left(\mathbb{P}(y \mid \theta)\right.$ may be concentrated over a small subset of $\left.\mathbb{R}^{N}\right)$
- Standard function approximation would require highly complex models.

Solution

Suitable decomposition of δ as $g \circ h$.

Bayesian Framework for Two-Stage Approach

- Final approximate Bayes risk:

$$
\frac{1}{M_{y}} \frac{1}{M_{\theta}} \sum_{i=1}^{M_{\theta}} \sum_{j=1}^{M_{y}} L\left(\theta_{i}, g\left(h\left(y_{j}^{(i)}\right)\right)\right)
$$

Bayesian Framework for Two-Stage Approach

- Final approximate Bayes risk:

$$
\frac{1}{M_{y}} \frac{1}{M_{\theta}} \sum_{i=1}^{M_{\theta}} \sum_{j=1}^{M_{y}} L\left(\theta_{i}, g\left(h\left(y_{j}^{(i)}\right)\right)\right)
$$

- By fixing h, we obtain $\tilde{\delta}_{\text {Bayes }}$ by solving for g

Bayesian Framework for Two-Stage Approach

- Final approximate Bayes risk:

$$
\frac{1}{M_{y}} \frac{1}{M_{\theta}} \sum_{i=1}^{M_{\theta}} \sum_{j=1}^{M_{y}} L\left(\theta_{i}, g\left(h\left(y_{j}^{(i)}\right)\right)\right)
$$

- By fixing h, we obtain $\tilde{\delta}_{\text {Bayes }}$ by solving for g

$$
g^{*}=\arg \min _{g \in G} \frac{1}{M_{y}} \frac{1}{M_{\theta}} \sum_{i=1}^{M_{\theta}} \sum_{j=1}^{M_{y}} L\left(\theta_{i}, g\left(h\left(y_{j}^{(i)}\right)\right)\right)
$$

Bayesian Framework for Two-Stage Approach

- Final approximate Bayes risk:

$$
\frac{1}{M_{y}} \frac{1}{M_{\theta}} \sum_{i=1}^{M_{\theta}} \sum_{j=1}^{M_{y}} L\left(\theta_{i}, g\left(h\left(y_{j}^{(i)}\right)\right)\right)
$$

- By fixing h, we obtain $\tilde{\delta}_{\text {Bayes }}$ by solving for g

$$
g^{*}=\arg \min _{g \in G} \frac{1}{M_{y}} \frac{1}{M_{\theta}} \sum_{i=1}^{M_{\theta}} \sum_{j=1}^{M_{y}} L\left(\theta_{i}, g\left(h\left(y_{j}^{(i)}\right)\right)\right)
$$

Bayes TS estimator!

Minimax Framework for Two-Stage Approach

- Minimax risk:

$$
R_{\operatorname{minimax}}(\delta)=\max _{\theta \in \Theta} R(\theta, \delta)
$$

Minimax Framework for Two-Stage Approach

- Minimax risk:

$$
R_{\operatorname{minimax}}(\delta)=\max _{\theta \in \Theta} R(\theta, \delta)
$$

Goal
Find δ that minimize $R_{\text {minimax }}(\delta)$

Minimax Framework for Two-Stage Approach

- Minimax risk:

$$
R_{\operatorname{minimax}}(\delta)=\max _{\theta \in \Theta} R(\theta, \delta)
$$

Goal

Find δ that minimize $R_{\text {minimax }}(\delta)$

$$
\max _{\theta \in \Theta} R(\theta, \delta)=\max _{\theta \in \Theta} \int_{\mathcal{Y}} L(\theta, \delta(\mathbf{y})) \mathbb{P}(\mathbf{y} \mid \theta) d \mathbf{y}
$$

Minimax Framework for Two-Stage Approach

- Minimax risk:

$$
R_{\operatorname{minimax}}(\delta)=\max _{\theta \in \Theta} R(\theta, \delta)
$$

Goal

Find δ that minimize $R_{\text {minimax }}(\delta)$

$$
\max _{\theta \in \Theta} R(\theta, \delta)=\max _{\theta \in \Theta} \underbrace{\int_{\mathcal{Y}} L(\theta, \delta(\mathbf{y})) \mathbb{P}(\mathbf{y} \mid \theta) d \mathbf{y}}_{\approx \frac{1}{M_{\mathbf{y}}} \sum_{j=1}^{M_{\mathbf{y}}} L\left(\theta, \delta\left(\mathbf{y}_{j}, \theta\right)\right)}
$$

Minimax Framework for Two-Stage Approach

- Minimax risk:

$$
R_{\operatorname{minimax}}(\delta)=\max _{\theta \in \Theta} R(\theta, \delta)
$$

Goal

Find δ that minimize $R_{\text {minimax }}(\delta)$

$$
\begin{aligned}
\max _{\theta \in \Theta} R(\theta, \delta)=\max _{\theta \in \Theta} & \underbrace{\left.\int_{\frac{1}{M_{\mathbf{y}}}} \sum_{j=1}^{M_{\mathbf{y}}} L(\theta, \delta(\mathbf{y})) \mathbb{P}(\mathbf{y} \mid \theta) d \mathbf{y}\left(\mathbf{y}_{j}, \theta\right)\right)}_{\mathcal{Y}}
\end{aligned}
$$

Approximate minimax optimization problem:

Minimax Framework for Two-Stage Approach

- Minimax risk:

$$
R_{\operatorname{minimax}}(\delta)=\max _{\theta \in \Theta} R(\theta, \delta)
$$

Goal

Find δ that minimize $R_{\text {minimax }}(\delta)$

$$
\begin{aligned}
\max _{\theta \in \Theta} R(\theta, \delta)=\max _{\theta \in \Theta} & \underbrace{\left.\int_{\frac{1}{M_{\mathbf{y}}}} \sum_{j=1}^{M_{\mathbf{y}}} L(\theta, \delta(\mathbf{y})) \mathbb{P}(\mathbf{y} \mid \theta) d \mathbf{y}\left(\mathbf{y}_{j}, \theta\right)\right)}_{\mathcal{Y}}
\end{aligned}
$$

Approximate minimax optimization problem:

$$
\min _{\delta \in \Delta} \max _{\theta \in \Theta} \frac{1}{M_{\mathbf{y}}} \sum_{j=1}^{M_{\mathbf{y}}} L\left(\theta, \delta\left(\mathbf{y}_{j, \theta}\right)\right)
$$

Minimax Framework for Two-Stage Approach

- Caveat: Θ could be potentially infinite!

Minimax Framework for Two-Stage Approach

- Caveat: Θ could be potentially infinite!
- How to make approximate minimax optimization tractable?

Minimax Framework for Two-Stage Approach

- Caveat: Θ could be potentially infinite!
- How to make approximate minimax optimization tractable?

Solution

Scenario approach (Calafiore and Campi, 2006)

Minimax Framework for Two-Stage Approach

- Caveat: Θ could be potentially infinite!
- How to make approximate minimax optimization tractable?

Solution

Scenario approach (Calafiore and Campi, 2006)

- Sample $\theta \stackrel{\text { i.i.d. }}{\sim} s(\theta), \quad i=1, \ldots, M_{\theta}$

Minimax Framework for Two-Stage Approach

- Caveat: Θ could be potentially infinite!
- How to make approximate minimax optimization tractable?

Solution

Scenario approach (Calafiore and Campi, 2006)

- Sample $\theta_{i} \stackrel{\text { i.i.d. }}{\sim} s(\theta), \quad i=1, \ldots, M_{\theta}$
- Tractable optimization problem:

$$
\begin{array}{r}
\min _{\delta \in \Delta} \max _{i=1, \ldots, M_{\theta}} L_{i}(\delta) \\
L_{i}(\delta)=\sum_{j=1}^{M_{y}} L\left(\theta_{i}, \delta\left(\mathbf{y}_{i j}\right)\right), \quad \mathbf{y}_{i j}=\mathbf{y}_{j, \theta_{i}}
\end{array}
$$

Minimax Framework for Two-Stage Approach

- Caveat: Θ could be potentially infinite!
- How to make approximate minimax optimization tractable?

Solution

Scenario approach (Calafiore and Campi, 2006)

- Sample $\theta \stackrel{\text { i.i.d. }}{\sim} s(\theta), \quad i=1, \ldots, M_{\theta}$
- Tractable optimization problem:

$$
\begin{array}{r}
\min _{\delta \in \Delta} \max _{i=1, \ldots, M_{\theta}} L_{i}(\delta) \\
L_{i}(\delta)=\sum_{j=1}^{M_{y}} L\left(\theta_{i}, \delta\left(\mathbf{y}_{i j}\right)\right), \quad \mathbf{y}_{i j}=\mathbf{y}_{j, \theta_{i}}
\end{array}
$$

- Epigraph formulation:

$$
\begin{array}{cl}
\min _{\delta \in \Delta, t \in \mathbb{R}} & t \\
\text { s.t. } & L_{i}(\delta) \leq t, \quad i=1, \ldots, M_{\theta}
\end{array}
$$

Minimax Framework for Two-Stage Approach

- Caveat: Θ could be potentially infinite!
- How to make approximate minimax optimization tractable?

Solution

Scenario approach (Calafiore and Campi, 2006)

- Sample $\theta \stackrel{\text { i.i.d. }}{\sim} s(\theta), \quad i=1, \ldots, M_{\theta}$
- Tractable optimization problem:

$$
\begin{array}{r}
\min _{\delta \in \Delta} \max _{i=1, \ldots, M_{\theta}} L_{i}(\delta) \\
L_{i}(\delta)=\sum_{j=1}^{M_{y}} L\left(\theta_{i}, \delta\left(\mathbf{y}_{i j}\right)\right), \quad \mathbf{y}_{i j}=\mathbf{y}_{j, \theta_{i}}
\end{array}
$$

- Epigraph formulation:

$$
\begin{array}{cl}
\min _{\delta \in \Delta, t \in \mathbb{R}} & t \\
\text { s.t. } & L_{i}(\delta) \leq t, \quad i=1, \ldots, M_{\theta}
\end{array}
$$

Solved using CVXPY!

Choice of First Stage

- A fixed number of quantiles of the order statistic is taken as the compressed data.

Choice of First Stage

- A fixed number of quantiles of the order statistic is taken as the compressed data.

Choice of First Stage

- A fixed number of quantiles of the order statistic is taken as the compressed data.

Choice of First Stage

- A fixed number of quantiles of the order statistic is taken as the compressed data.

Choice of First Stage

$$
\text { - }\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right)
$$

Choice of First Stage

$$
\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right) \stackrel{\text { sort }}{\left(\begin{array}{c}
y_{(1)} \\
\vdots \\
y_{(N)}
\end{array}\right)}
$$

Choice of First Stage

$$
>\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right) \stackrel{\text { sort }}{\left(\begin{array}{c}
y_{(1)} \\
\vdots \\
y_{(N)}
\end{array}\right)} \xrightarrow[\text { order statistic }]{\text { every } q^{\text {th }} \text { quantile }} \underbrace{\left(\begin{array}{c}
y_{(1)} \\
y_{\left(\frac{N}{q}\right)} \\
y_{\left(\frac{2 N}{q}\right)} \\
\vdots \\
y_{(N)}
\end{array}\right)}_{\text {compressed data }}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{T}
$$

Choice of First Stage

- Compressed data: $\alpha:=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{T}$, where α_{i} s are quantiles in increasing order.

Choice of Second Stage

- Construct non-linear features $\phi(\alpha)$

Choice of Second Stage

- Construct non-linear features $\phi(\alpha)$
- α is the compressed data from first stage

Choice of Second Stage

- Construct non-linear features $\phi(\alpha)$
- α is the compressed data from first stage
- ϕ is a non-linear function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $n<m \ll N$

Choice of Second Stage

- Construct non-linear features $\phi(\alpha)$
$-\alpha$ is the compressed data from first stage
$>\phi$ is a non-linear function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $n<m \ll N$
\rightarrow Deploy linear regression with $\phi(\alpha)$ as features

Choice of Second Stage

- Construct non-linear features $\phi(\alpha)$
- α is the compressed data from first stage
- ϕ is a non-linear function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $n<m \ll N$
- Deploy linear regression with $\phi(\alpha)$ as features
- Both n and $\phi(\cdot)$ are user choices

Choice of Second Stage

- Construct non-linear features $\phi(\alpha)$
- α is the compressed data from first stage
- ϕ is a non-linear function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $n<m \ll N$
- Deploy linear regression with $\phi(\alpha)$ as features
- Both n and $\phi(\cdot)$ are user choices
- Selected according to the specific estimation problem.

Algorithm: Bayes Two-Stage Estimator

Training

Algorithm: Bayes Two-Stage Estimator

Training

Algorithm: Bayes Two-Stage Estimator

Training

Algorithm: Bayes Two-Stage Estimator

Training

Algorithm: Bayes Two-Stage Estimator

Training

Algorithm: Bayes Two-Stage Estimator

Training

Algorithm: Bayes Two-Stage Estimator

Estimation

Algorithm: Bayes Two-Stage Estimator

Estimation

Algorithm: Minimax Two-Stage Estimator

Training

Algorithm: Minimax Two-Stage Estimator

Training

Algorithm: Minimax Two-Stage Estimator

Training

Algorithm: Minimax Two-Stage Estimator

Training

Algorithm: Minimax Two-Stage Estimator

Training

Algorithm: Minimax Two-Stage Estimator

Training

Solve the mimimax optimization program:

s.t. $\quad\left(\theta_{i}-\beta^{T} \phi\left(\alpha^{(i)}\right)\right)^{2} \leq t$
Compress

$$
i=1, \ldots, M_{\theta}
$$

Algorithm: Minimax Two-Stage Estimator

Training

Solve the mimimax optimization program:

s.t. $\quad\left(\theta_{i}-\beta^{T} \phi\left(\alpha^{(i)}\right)\right)^{2} \leq t$

$$
i=1, \ldots, M_{\theta}
$$

Algorithm: Minimax Two-Stage Estimator

Estimation

Outline

Introduction

Two-Stage Approach

Statistical Decision Theoretical Perspective
Bayesian Framework for Two-Stage Approach
Minimax Framework for Two-Stage Approach
Choice of First Stage and Second Stage

Example

Conclusion

Example

- Aim: To estimate scale (η) and shape (γ) parameters of Weibull process:

Example

- Aim: To estimate scale (η) and shape (γ) parameters of Weibull process:

$$
f(A)=\frac{\gamma}{\eta}\left(\frac{A}{\eta}\right)^{\gamma-1} \exp \left[-\left(\frac{A}{\eta}\right)^{\gamma}\right], \quad A \geq 0
$$

Example

- Aim: To estimate scale (η) and shape (γ) parameters of Weibull process:

$$
f(A)=\frac{\gamma}{\eta}\left(\frac{A}{\eta}\right)^{\gamma-1} \exp \left[-\left(\frac{A}{\eta}\right)^{\gamma}\right], \quad A \geq 0
$$

- $M_{\theta}=1000, N=10000, n=10$, and $M_{\text {test }}=1000$

Example

- Aim: To estimate scale (η) and shape (γ) parameters of Weibull process:

$$
f(A)=\frac{\gamma}{\eta}\left(\frac{A}{\eta}\right)^{\gamma-1} \exp \left[-\left(\frac{A}{\eta}\right)^{\gamma}\right], \quad A \geq 0
$$

- $M_{\theta}=1000, N=10000, n=10$, and $M_{\text {test }}=1000$
- Choice of ϕ :
- Scale:

$$
\phi_{i}(\alpha)= \begin{cases}\alpha_{i}, & \text { if } 1 \leq i \leq n \\ \frac{\alpha_{i-n+1}}{\alpha_{1}}, & \text { if } n+1 \leq i \leq 2 n-1\end{cases}
$$

Example

- Aim: To estimate scale (η) and shape (γ) parameters of Weibull process:

$$
f(A)=\frac{\gamma}{\eta}\left(\frac{A}{\eta}\right)^{\gamma-1} \exp \left[-\left(\frac{A}{\eta}\right)^{\gamma}\right], \quad A \geq 0
$$

- $M_{\theta}=1000, N=10000, n=10$, and $M_{\text {test }}=1000$
- Choice of ϕ :
- Scale:

$$
\phi_{i}(\alpha)= \begin{cases}\alpha_{i}, & \text { if } 1 \leq i \leq n \\ \frac{\alpha_{i-n+1}}{\alpha_{1}}, & \text { if } n+1 \leq i \leq 2 n-1\end{cases}
$$

- Shape: Let

$$
\psi_{j}(\alpha)= \begin{cases}\alpha_{j}, & \text { if } 1 \leq j \leq n \\ \frac{\alpha_{j-n}}{\alpha_{n}}, & \text { if } n+1 \leq j \leq 2 n-1\end{cases}
$$

Example

- Aim: To estimate scale (η) and shape (γ) parameters of Weibull process:

$$
f(A)=\frac{\gamma}{\eta}\left(\frac{A}{\eta}\right)^{\gamma-1} \exp \left[-\left(\frac{A}{\eta}\right)^{\gamma}\right], \quad A \geq 0
$$

- $M_{\theta}=1000, N=10000, n=10$, and $M_{\text {test }}=1000$
- Choice of ϕ :
- Scale:

$$
\phi_{i}(\alpha)= \begin{cases}\alpha_{i}, & \text { if } 1 \leq i \leq n \\ \frac{\alpha_{i-n+1}}{\alpha_{1}}, & \text { if } n+1 \leq i \leq 2 n-1\end{cases}
$$

- Shape: Let

$$
\psi_{j}(\alpha)= \begin{cases}\alpha_{j}, & \text { if } 1 \leq j \leq n \\ \frac{\alpha_{j-n}}{\alpha_{n}}, & \text { if } n+1 \leq j \leq 2 n-1\end{cases}
$$

- $\phi(\alpha)$ consist of monomials of the $\psi_{j}(\alpha)$'s up to order 2

Example

Bayes Two-Stage estimator

- Independent priors $\mathcal{U}[1,20]$ for η and γ

Example

Bayes Two-Stage estimator

- Independent priors $\mathcal{U}[1,20]$ for η and γ

Example

- Independent uninformative priors for η and γ

Example

- Independent uninformative priors for η and γ

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{\log \frac{b}{a}}, \text { if } a \leq x \leq b \\
0, \text { otherwise }
\end{array}\right.
$$

Example

- Independent uninformative priors for η and γ

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{\log \frac{b}{a}}, \text { if } a \leq x \leq b \\
0, \text { otherwise }
\end{array}\right.
$$

Shape

Example

Minimax Two-Stage Estimator

Example

Minimax Two-Stage Estimator

- Proposal distribution $\mathrm{S}: \mathcal{U}[1,20]$

Example

Minimax Two-Stage Estimator

- Proposal distribution $\mathrm{S}: \mathcal{U}[1,20]$

Outline

Introduction

Two-Stage Approach

Statistical Decision Theoretical Perspective
Bayesian Framework for Two-Stage Approach
Minimax Framework for Two-Stage Approach
Choice of First Stage and Second Stage

Example

Conclusion

Conclusion

Conclusion

- Provided statistical decision-theoretical derivation of TS that leads to Bayes and minimax formulations

Conclusion

- Provided statistical decision-theoretical derivation of TS that leads to Bayes and minimax formulations
- Suggested a specific structure for the second stage of TS, which leads to simple convex programs for both Bayes and minimax formulations

Conclusion

- Provided statistical decision-theoretical derivation of TS that leads to Bayes and minimax formulations
- Suggested a specific structure for the second stage of TS, which leads to simple convex programs for both Bayes and minimax formulations
- Illustrated the performance of the novel Bayes and minimax TS formulations

Thank You

Appendix

Appendix: CRLB-MSE Comparison

True Values		CRLB		MSE, Bayesian (Uniform Prior)		MSE, Bayesian (Uninformative Prior)		MSE, Minimax
η	γ	η	γ	$\hat{\eta}$	$\hat{\gamma}$	$\hat{\eta}$	$\hat{\gamma}$	$\hat{\gamma}$
2	2	1.11×10^{-4}	2.43×10^{-4}	2.58×10^{-4}	5.77×10^{-2}	1.42×10^{-4}	2.06×10^{-2}	2.17×10^{-4}
2	8	6.93×10^{-6}	3.89×10^{-3}	1.11×10^{-5}	5.61×10^{-2}	1.27×10^{-5}	4.44×10^{-2}	4.28×10^{-4}
4	2	4.43×10^{-4}	2.43×10^{-4}	6.74×10^{-4}	1.05×10^{-1}	6.07×10^{-4}	2.43×10^{-2}	8.38×10^{-4}
4	8	2.77×10^{-5}	3.89×10^{-3}	3.84×10^{-5}	6.40×10^{-2}	4.33×10^{-5}	3.96×10^{-2}	1.72×10^{-3}
8	2	1.77×10^{-3}	2.43×10^{-4}	2.26×10^{-3}	1.89×10^{-1}	2.27×10^{-3}	2.59×10^{-2}	
8	8	1.11×10^{-4}	3.89×10^{-3}	1.58×10^{-4}	7.901×10^{-2}	1.76×10^{-4}	4.51×10^{-2}	3.307×10^{-3}
18.605×10^{-2}								

Table: MSE of Bayes and minimax TS estimators of the scale and shape parameters, and their corresponding CRLBs.

Appendix: Minimax TS Estimator for Weibull Process

- Proposal distribution $\mathrm{s}: \mathcal{U}[1,20]$;

True distribution of θ :

$$
f(\theta)=\left\{\begin{array}{l}
\frac{1}{\log \frac{b}{a}}, \text { if } a \leq \theta \leq b \\
\theta, \text { otherwise }
\end{array}\right.
$$

where $a=1, b=20$

- $\mathrm{d}=3 ; \mathrm{n}=5$

Appendix: Minimax TS Estimator for Weibull Process

- Proposal distribution S:

$$
f(\theta)=\left\{\begin{array}{l}
\frac{1}{\log \frac{b}{a}} \\
\theta \\
0, \text { if } a \leq \theta \leq b \\
\text { otherwise }
\end{array}\right.
$$

where $a=1, b=20$
True distribution of $\theta: \mathcal{U}[1,20]$

- $\mathrm{d}=3 ; \mathrm{n}=5$

Scale

Shape

