

A Statistical Decision Theoretical Perspective on Two-Stage Approach to Parameter Estimation

Braghadeesh Lakshminarayanan and Cristian R. Rojas

Division of Decision and Control Systems, KTH Royal Institute of Technology, Stockholm, Sweden

> 61st IEEE CDC, Cancun December 8, 2022

Two-Stage Approach

Statistical Decision Theoretical Perspective

Bayesian Framework for Two-Stage Approach Minimax Framework for Two-Stage Approach Choice of First Stage and Second Stage

Example

Conclusion

Two-Stage Approach

Statistical Decision Theoretical Perspective

Bayesian Framework for Two-Stage Approach Minimax Framework for Two-Stage Approach Choice of First Stage and Second Stage

Example

Conclusion

Parameter estimation: approximating the unknown parameters of a mathematical model describing a real phenomenon

- Parameter estimation: approximating the unknown parameters of a mathematical model describing a real phenomenon
- Two-Stage (TS) approach: one of the methods of estimating unknown parameters

- Parameter estimation: approximating the unknown parameters of a mathematical model describing a real phenomenon
- Two-Stage (TS) approach: one of the methods of estimating unknown parameters
 - An inverse supervised learning setup

- Parameter estimation: approximating the unknown parameters of a mathematical model describing a real phenomenon
- Two-Stage (TS) approach: one of the methods of estimating unknown parameters
 - An inverse supervised learning setup

Advantages of TS:

- Advantages of TS:
 - No explicit likelihood computation
 - Final estimation problem can be a simple convex optimization program

Advantages of TS:

- No explicit likelihood computation
- Final estimation problem can be a simple convex optimization program
- However, there is a lack of theoretical justification for TS approach

Advantages of TS:

- No explicit likelihood computation
- Final estimation problem can be a simple convex optimization program
- However, there is a lack of theoretical justification for TS approach

Our Contribution

Constructed statistical framework to justify the working principle of TS approach

Advantages of TS:

- No explicit likelihood computation
- Final estimation problem can be a simple convex optimization program
- However, there is a lack of theoretical justification for TS approach

Our Contribution

Constructed statistical framework to justify the working principle of TS approach

Goal

Design optimal decision rules that minimize $R(\theta, \delta)$

Goal

Design optimal decision rules that minimize $R(\theta, \delta)$

Bayes estimator: Minimize $\mathbb{E}_{\theta \sim \pi}[R(\theta, \delta)]$

Goal

Design optimal decision rules that minimize $R(\theta, \delta)$

- Bayes estimator: Minimize $\mathbb{E}_{\theta \sim \pi}[R(\theta, \delta)]$
- Minimax estimator: Minimize $\max_{\theta \in \Theta} R(\theta, \delta)$

Two-Stage Approach

Statistical Decision Theoretical Perspective

Bayesian Framework for Two-Stage Approach Minimax Framework for Two-Stage Approach Choice of First Stage and Second Stage

Example

Conclusion

Proposed by S. Garatti and S. Bittanti. "Estimation of white-box model parameters via artificial data generation: a two-stage approach". In: IFAC Proceedings Volumes 41.2 (2008), pp. 11409–11414

Proposed by S. Garatti and S. Bittanti. "Estimation of white-box model parameters via artificial data generation: a two-stage approach". In: IFAC Proceedings Volumes 41.2 (2008), pp. 11409–11414

• $\hat{\theta}_i = g(h(\mathbf{y}^{(i)}))$: estimates of θ_i for $i = 1, \dots, M$

Proposed by S. Garatti and S. Bittanti. "Estimation of white-box model parameters via artificial data generation: a two-stage approach". In: IFAC Proceedings Volumes 41.2 (2008), pp. 11409–11414

- $\hat{\theta}_i = g(h(\mathbf{y}^{(i)}))$: estimates of θ_i for i = 1, ..., M
- h is fixed and g is chosen from function space G to minimize the training error

Proposed by S. Garatti and S. Bittanti. "Estimation of white-box model parameters via artificial data generation: a two-stage approach". In: IFAC Proceedings Volumes 41.2 (2008), pp. 11409–11414

- $\hat{\theta}_i = g(h(\mathbf{y}^{(i)}))$: estimates of θ_i for i = 1, ..., M
- h is fixed and g is chosen from function space G to minimize the training error

•
$$g^* = \operatorname*{arg\,min}_{g \in G} \frac{1}{M_y} \frac{1}{M_\theta} \sum_{i=1}^{M_\theta} \sum_{j=1}^{M_y} L(\theta_i, g(h(y_j^{(i)})))$$

Proposed by S. Garatti and S. Bittanti. "Estimation of white-box model parameters via artificial data generation: a two-stage approach". In: IFAC Proceedings Volumes 41.2 (2008), pp. 11409–11414

- $\hat{\theta}_i = g(h(\mathbf{y}^{(i)}))$: estimates of θ_i for i = 1, ..., M
- h is fixed and g is chosen from function space G to minimize the training error

$$\bullet g^* = \underset{g \in G}{\operatorname{arg\,min}} \frac{1}{M_y} \frac{1}{M_\theta} \sum_{i=1}^{M_\theta} \sum_{j=1}^{M_y} L(\theta_i, g(h(y_j^{(i)})))$$

 G can be a linear regressor, deep neural network, gradient boosted regression tree, etc.

Outline

Introduction

Two-Stage Approach

Statistical Decision Theoretical Perspective Bayesian Framework for Two-Stage Approach Minimax Framework for Two-Stage Approach Choice of First Stage and Second Stage

Example

Conclusion

• Assume a prior π over Θ

- $\blacktriangleright \text{ Assume a prior } \pi \text{ over } \Theta$
- Bayes risk:

$$extsf{R}_{ extsf{Bayes}}(\delta) = \int_{\Theta} extsf{R}(heta,\delta) \pi(heta) \, extsf{d} heta$$

- $\blacktriangleright \text{ Assume a prior } \pi \text{ over } \Theta$
- Bayes risk:

$$R_{\text{Bayes}}(\delta) = \int_{\Theta} R(\theta, \delta) \pi(\theta) \, d\theta$$
$$= \underbrace{\int_{\Theta} \left[\int_{\mathcal{Y}} L(\theta, \delta(\mathbf{y})) \mathbb{P}(\mathbf{y}|\theta) d\mathbf{y} \right] \pi(\theta) d\theta}_{\Theta}$$

can be approximated by a Monte-Carlo sum!

- Assume a prior π over Θ
- Bayes risk:

$$R_{\text{Bayes}}(\delta) = \int_{\Theta} R(\theta, \delta) \pi(\theta) \, d\theta$$
$$= \underbrace{\int_{\Theta} \left[\int_{\mathcal{Y}} L(\theta, \delta(\mathbf{y})) \mathbb{P}(\mathbf{y}|\theta) d\mathbf{y} \right] \pi(\theta) d\theta}_{\mathcal{Y}}$$

can be approximated by a Monte-Carlo sum!

Approximate Bayes risk:

$$R_{\text{Bayes}}(\delta) \approx \frac{1}{M_y} \frac{1}{M_{\theta}} \sum_{i=1}^{M_{\theta}} \sum_{j=1}^{M_y} L(\theta_i, \delta(\mathbf{y}_j^{(i)}))$$

- Assume a prior π over Θ
- Bayes risk:

$$R_{\text{Bayes}}(\delta) = \int_{\Theta} R(\theta, \delta) \pi(\theta) \, d\theta$$
$$= \underbrace{\int_{\Theta} \left[\int_{\mathcal{Y}} L(\theta, \delta(\mathbf{y})) \mathbb{P}(\mathbf{y}|\theta) d\mathbf{y} \right] \pi(\theta) d\theta}_{\Theta}$$

can be approximated by a Monte-Carlo sum!

Approximate Bayes risk:

$$R_{\text{Bayes}}(\delta) \approx \frac{1}{M_y} \frac{1}{M_{\theta}} \sum_{i=1}^{M_{\theta}} \sum_{j=1}^{M_y} L(\theta_i, \delta(\mathbf{y}_j^{(i)}))$$

Goal

Find δ that minimize $R_{\text{Bayes}}(\delta)$

Caveat: $\mathbb{P}(y|\theta)$ may be subject to a measure concentration phenomenon. $(\mathbb{P}(y|\theta)$ may be concentrated over a small subset of \mathbb{R}^{N})

- **Caveat:** $\mathbb{P}(y|\theta)$ may be subject to a measure concentration phenomenon. $(\mathbb{P}(y|\theta)$ may be concentrated over a small subset of \mathbb{R}^{N})
- Standard function approximation would require highly complex models.

- **Caveat**: $\mathbb{P}(y|\theta)$ may be subject to a measure concentration phenomenon. $(\mathbb{P}(y|\theta)$ may be concentrated over a small subset of \mathbb{R}^{N})
- Standard function approximation would require highly complex models.

Solution

Suitable decomposition of δ as $g \circ h$.

Final approximate Bayes risk:

$$\frac{1}{M_y}\frac{1}{M_\theta}\sum_{i=1}^{M_\theta}\sum_{j=1}^{M_y}L(\theta_i,g(h(y_j^{(i)}))).$$

Final approximate Bayes risk:

$$\frac{1}{M_y}\frac{1}{M_\theta}\sum_{i=1}^{M_\theta}\sum_{j=1}^{M_y}L(\theta_i,g(h(y_j^{(i)}))).$$

• By fixing *h*, we obtain
$$\tilde{\delta}_{\text{Bayes}}$$
 by solving for *g*

Final approximate Bayes risk:

$$\frac{1}{M_y}\frac{1}{M_\theta}\sum_{i=1}^{M_\theta}\sum_{j=1}^{M_y}L(\theta_i,g(h(y_j^{(i)}))).$$

 $\blacktriangleright~$ By fixing h, we obtain $\tilde{\delta}_{\rm Bayes}$ by solving for g

$$g^* = \arg\min_{g \in G} \frac{1}{M_y} \frac{1}{M_\theta} \sum_{i=1}^{M_\theta} \sum_{j=1}^{M_y} L(\theta_i, g(h(y_j^{(i)})))$$

Final approximate Bayes risk:

$$\frac{1}{M_y}\frac{1}{M_\theta}\sum_{i=1}^{M_\theta}\sum_{j=1}^{M_y}L(\theta_i,g(h(y_j^{(i)}))).$$

 $\blacktriangleright~$ By fixing h, we obtain $\tilde{\delta}_{\rm Bayes}$ by solving for g

$$g^* = \arg\min_{g \in G} \frac{1}{M_y} \frac{1}{M_\theta} \sum_{i=1}^{M_\theta} \sum_{j=1}^{M_y} L(\theta_i, g(h(y_j^{(i)}))).$$

Bayes TS estimator!

Minimax risk:

$$extsf{R}_{ extsf{minimax}}(\delta) = \max_{ heta \in \Theta} extsf{R}(heta, \delta)$$

Minimax risk:

$$R_{\min}(\delta) = \max_{\theta \in \Theta} R(\theta, \delta)$$

Goal

Find δ that minimize $R_{\min}(\delta)$

Minimax risk:

$$R_{\min}(\delta) = \max_{\theta \in \Theta} R(\theta, \delta)$$

Goal

Find δ that minimize $R_{\min}(\delta)$

$$\max_{\theta \in \Theta} \mathit{R}(\theta, \delta) = \max_{\theta \in \Theta} \int_{\mathcal{Y}} \mathit{L}\left(\theta, \delta(\mathbf{y})\right) \mathbb{P}(\mathbf{y}|\theta) d\mathbf{y}$$

Minimax risk:

$$\mathsf{R}_{\mathsf{minimax}}(\delta) = \max_{ heta \in \Theta} \mathsf{R}(heta, \delta)$$

Goal

Find δ that minimize ${\it R}_{
m minimax}(\delta)$

$$\max_{\theta \in \Theta} R(\theta, \delta) = \max_{\theta \in \Theta} \underbrace{\int_{\mathcal{Y}} L(\theta, \delta(\mathbf{y})) \mathbb{P}(\mathbf{y}|\theta) d\mathbf{y}}_{\approx \frac{1}{M_{\mathbf{y}}} \sum_{j=1}^{M_{\mathbf{y}}} L(\theta, \delta(\mathbf{y}_{j,\theta}))}$$

Minimax risk:

$$\mathsf{R}_{\mathsf{minimax}}(\delta) = \max_{ heta \in \Theta} \mathsf{R}(heta, \delta)$$

Goal

Find δ that minimize ${\it R}_{
m minimax}(\delta)$

$$\max_{\theta \in \Theta} R(\theta, \delta) = \max_{\theta \in \Theta} \underbrace{\int_{\mathcal{Y}} L(\theta, \delta(\mathbf{y})) \mathbb{P}(\mathbf{y}|\theta) d\mathbf{y}}_{\approx \frac{1}{M_{\mathbf{y}}} \sum_{j=1}^{M_{\mathbf{y}}} L(\theta, \delta(\mathbf{y}_{j,\theta}))}$$

Approximate minimax optimization problem:

Minimax risk:

$$extsf{R}_{ extsf{minimax}}(\delta) = \max_{ heta \in \Theta} extsf{R}(heta, \delta)$$

Goal

Find δ that minimize ${\it R}_{
m minimax}(\delta)$

$$\max_{\theta \in \Theta} R(\theta, \delta) = \max_{\theta \in \Theta} \underbrace{\int_{\mathcal{Y}} L(\theta, \delta(\mathbf{y})) \mathbb{P}(\mathbf{y}|\theta) d\mathbf{y}}_{\approx \frac{1}{M_{\mathbf{y}}} \sum_{j=1}^{M_{\mathbf{y}}} L(\theta, \delta(\mathbf{y}_{j,\theta}))}$$

Approximate minimax optimization problem:

$$\min_{\delta \in \Delta} \max_{\theta \in \Theta} \frac{1}{M_{\mathbf{y}}} \sum_{j=1}^{M_{\mathbf{y}}} L(\theta, \delta(\mathbf{y}_{j,\theta}))$$

Caveat: Θ could be potentially infinite!

- ► **Caveat**: ⊖ could be potentially infinite!
- How to make approximate minimax optimization tractable?

- How to make approximate minimax optimization tractable?

Solution

Scenario approach (Calafiore and Campi, 2006)

- How to make approximate minimax optimization tractable?

Solution

Scenario approach (Calafiore and Campi, 2006)

Sample
$$\theta_i \overset{i.i.d.}{\sim} s(\theta), \quad i = 1, \dots, M_{\theta}$$

- How to make approximate minimax optimization tractable?

Solution

Scenario approach (Calafiore and Campi, 2006)

Sample $\theta_i \overset{i.i.d.}{\sim} s(\theta), \quad i = 1, \dots, M_{\theta}$

Tractable optimization problem:

$$\min_{\delta \in \Delta} \max_{i=1,\ldots,M_{\theta}} L_i(\delta)$$

$$L_i(\delta) = \sum_{j=1}^{M_{\mathbf{y}}} L(\theta_i, \delta(\mathbf{y}_{ij})), \quad \mathbf{y}_{ij} = \mathbf{y}_{j, \theta_i}$$

- How to make approximate minimax optimization tractable?

Solution

Scenario approach (Calafiore and Campi, 2006)

Sample $\theta_i \overset{i.i.d.}{\sim} s(\theta), \quad i = 1, \dots, M_{\theta}$

Tractable optimization problem:

$$\min_{\delta \in \Delta} \max_{i=1,\ldots,M_{\theta}} L_i(\delta)$$

$$\mathsf{L}_i(\delta) = \sum_{j=1}^{M_{\mathbf{y}}} \mathsf{L}(heta_i, \delta(\mathbf{y}_{ij})), \quad \mathbf{y}_{ij} = \mathbf{y}_{j, heta_i}$$

Epigraph formulation:

$$egin{array}{ccc} \min & t & \ \delta \in \Delta, t \in \mathbb{R} & \ extsf{s.t.} & L_i(\delta) \leq t, \quad i=1,\ldots, M_{ heta}. \end{array}$$

- ► **Caveat**: ⊖ could be potentially infinite!
- How to make approximate minimax optimization tractable?

Solution

Scenario approach (Calafiore and Campi, 2006)

Sample $\theta_i \overset{i.i.d.}{\sim} s(\theta), \quad i = 1, \dots, M_{\theta}$

Tractable optimization problem:

$$\min_{\delta \in \Delta} \max_{i=1,\ldots,M_{\theta}} L_i(\delta)$$

$$\mathsf{L}_i(\delta) = \sum_{j=1}^{M_{\mathbf{y}}} \mathsf{L}(heta_i, \delta(\mathbf{y}_{ij})), \quad \mathbf{y}_{ij} = \mathbf{y}_{j, heta_i}$$

Epigraph formulation:

$$egin{array}{ccc} \min & t & \ \delta \in \Delta, t \in \mathbb{R} & \ extsf{s.t.} & L_i(\delta) \leq t, \quad i=1,\ldots, M_{ heta}. \end{array}$$

Solved using CVXPY!

Compressed data: α := (α₁,..., α_n)^T, where α_is are quantiles in increasing order.

• Construct non-linear features $\phi(\alpha)$

 $\blacktriangleright \alpha$ is the compressed data from first stage

- $\blacktriangleright \alpha$ is the compressed data from first stage
- ϕ is a non-linear function $\phi \colon \mathbb{R}^n \to \mathbb{R}^m$ with $n < m \ll N$

- $\blacktriangleright \alpha$ is the compressed data from first stage
- ▶ ϕ is a non-linear function $\phi \colon \mathbb{R}^n \to \mathbb{R}^m$ with $n < m \ll N$
- Deploy linear regression with $\phi(\alpha)$ as features

- $\blacktriangleright \alpha$ is the compressed data from first stage
- ▶ ϕ is a non-linear function $\phi \colon \mathbb{R}^n \to \mathbb{R}^m$ with $n < m \ll N$
- Deploy linear regression with $\phi(\alpha)$ as features
- Both *n* and $\phi(\cdot)$ are user choices

- Construct non-linear features $\phi(\alpha)$
 - α is the compressed data from first stage
 - ϕ is a non-linear function $\phi \colon \mathbb{R}^n \to \mathbb{R}^m$ with $n < m \ll N$
- Deploy linear regression with $\phi(\alpha)$ as features
- Both *n* and $\phi(\cdot)$ are user choices
 - Selected according to the specific estimation problem.

Algorithm: Bayes Two-Stage Estimator

Training

Prior π

Algorithm: Bayes Two-Stage Estimator

Prior
$$\pi$$

 $i = 1, \dots, M_{\theta}$
Generate $y_1^{(i)}, \dots, y_N^{(i)} \stackrel{i.i.d.}{\sim} \mathbb{P}(\cdot | \theta_i)$

Algorithm: Bayes Two-Stage Estimator

Estimation

Algorithm: Bayes Two-Stage Estimator

Estimation

Algorithm: Minimax Two-Stage Estimator

Algorithm: Minimax Two-Stage Estimator

Proposal S

Algorithm: Minimax Two-Stage Estimator

$$\overbrace{\text{Proposal S}}^{\text{Sample } \theta_i \sim S} \xrightarrow{\text{Generate } y_1^{(i)}, \ldots, y_N^{(i)} \stackrel{i.i.d.}{\sim} \mathbb{P}(\cdot | \theta_i)}$$

Algorithm: Minimax Two-Stage Estimator

Estimation

Outline

Introduction

Two-Stage Approach

Statistical Decision Theoretical Perspective

Bayesian Framework for Two-Stage Approach Minimax Framework for Two-Stage Approach Choice of First Stage and Second Stage

Example

Conclusion

Aim: To estimate scale (η) and shape (γ) parameters of Weibull process:

Aim: To estimate scale (η) and shape (γ) parameters of Weibull process:

$$f(\mathsf{A}) = rac{\gamma}{\eta} \left(rac{\mathsf{A}}{\eta}
ight)^{\gamma-1} \exp\left[-\left(rac{\mathsf{A}}{\eta}
ight)^{\gamma}
ight], \quad \mathsf{A} \ge \mathsf{0}.$$

Aim: To estimate scale (η) and shape (γ) parameters of Weibull process:

$$f(\mathsf{A}) = rac{\gamma}{\eta} \left(rac{\mathsf{A}}{\eta}
ight)^{\gamma-1} \exp\left[-\left(rac{\mathsf{A}}{\eta}
ight)^{\gamma}
ight], \quad \mathsf{A} \geq 0.$$

•
$$M_{\theta} = 1000$$
, $N = 10000$, $n = 10$, and $M_{test} = 1000$

Example

Aim: To estimate scale (η) and shape (γ) parameters of Weibull process:

$$f(\mathsf{A}) = rac{\gamma}{\eta} \left(rac{\mathsf{A}}{\eta}
ight)^{\gamma-1} \exp\left[-\left(rac{\mathsf{A}}{\eta}
ight)^{\gamma}
ight], \quad \mathsf{A} \geq 0.$$

•
$$M_{\theta} = 1000$$
, $N = 10000$, $n = 10$, and $M_{\text{test}} = 1000$

• Choice of
$$\phi$$
:

Scale:

$$\phi_i(\alpha) = \begin{cases} \alpha_i, & \text{if } 1 \leq i \leq n \\ \frac{\alpha_{i-n+1}}{\alpha_1}, & \text{if } n+1 \leq i \leq 2n-1. \end{cases}$$

Example

Aim: To estimate scale (η) and shape (γ) parameters of Weibull process:

$$f(\mathsf{A}) = rac{\gamma}{\eta} \left(rac{\mathsf{A}}{\eta}
ight)^{\gamma-1} \exp\left[-\left(rac{\mathsf{A}}{\eta}
ight)^{\gamma}
ight], \quad \mathsf{A} \geq 0.$$

•
$$M_{\theta} = 1000$$
, $N = 10000$, $n = 10$, and $M_{\text{test}} = 1000$

• Choice of ϕ :

Scale:

$$\phi_i(\alpha) = \begin{cases} \alpha_i, & \text{if } 1 \leq i \leq n \\ \frac{\alpha_{i-n+1}}{\alpha_1}, & \text{if } n+1 \leq i \leq 2n-1. \end{cases}$$

Shape: Let

$$\psi_j(\alpha) = egin{cases} lpha_j, & ext{if } 1 \leq j \leq n \ rac{lpha_{j-n}}{lpha_n}, & ext{if } n+1 \leq j \leq 2n-1. \end{cases}$$

Example

Aim: To estimate scale (η) and shape (γ) parameters of Weibull process:

$$f(\mathsf{A}) = rac{\gamma}{\eta} \left(rac{\mathsf{A}}{\eta}
ight)^{\gamma-1} \exp\left[-\left(rac{\mathsf{A}}{\eta}
ight)^{\gamma}
ight], \quad \mathsf{A} \geq 0.$$

•
$$M_{\theta} = 1000$$
, $N = 10000$, $n = 10$, and $M_{test} = 1000$

• Choice of ϕ :

Scale:

$$\phi_i(\alpha) = \begin{cases} \alpha_i, & \text{if } 1 \leq i \leq n \\ \frac{\alpha_{i-n+1}}{\alpha_1}, & \text{if } n+1 \leq i \leq 2n-1. \end{cases}$$

Shape: Let

$$\psi_j(\alpha) = \begin{cases} \alpha_j, & \text{if } 1 \leq j \leq n \\ \frac{\alpha_{j-n}}{\alpha_n}, & \text{if } n+1 \leq j \leq 2n-1. \end{cases}$$

• $\phi(lpha)$ consist of monomials of the $\psi_j(lpha)$'s up to order 2

Bayes Two-Stage estimator

 \bullet Independent priors $\mathcal{U}[\mathbf{1},\mathbf{20}]$ for η and γ

Bayes Two-Stage estimator

 \bullet Independent priors $\mathcal{U}[\mathbf{1},\mathbf{20}]$ for η and γ

 \bullet Independent uninformative priors for η and γ

 \bullet Independent uninformative priors for η and γ

$$f(x) = \begin{cases} \frac{1}{\log \frac{b}{a}}, \text{ if } a \leq x \leq b\\ 0, \text{ otherwise} \end{cases}$$

 \bullet Independent uninformative priors for η and γ

$$f(x) = \begin{cases} \frac{1}{\log \frac{b}{a}}, & \text{if } a \leq x \leq b\\ 0, & \text{otherwise} \end{cases}$$

Minimax Two-Stage Estimator

Minimax Two-Stage Estimator

• Proposal distribution S: $\mathcal{U}[1, 20]$

Minimax Two-Stage Estimator

• Proposal distribution S: $\mathcal{U}[1, 20]$

Outline

Introduction

Two-Stage Approach

Statistical Decision Theoretical Perspective

Bayesian Framework for Two-Stage Approach Minimax Framework for Two-Stage Approach Choice of First Stage and Second Stage

Example

Conclusion

Provided statistical decision-theoretical derivation of TS that leads to Bayes and minimax formulations

- Provided statistical decision-theoretical derivation of TS that leads to Bayes and minimax formulations
- Suggested a specific structure for the second stage of TS, which leads to simple convex programs for both Bayes and minimax formulations

- Provided statistical decision-theoretical derivation of TS that leads to Bayes and minimax formulations
- Suggested a specific structure for the second stage of TS, which leads to simple convex programs for both Bayes and minimax formulations
- Illustrated the performance of the novel Bayes and minimax TS formulations

Thank You

Appendix

Appendix: CRLB-MSE Comparison

True Values		CRLB		MSE, Bayesian (Uniform Prior)		MSE, Bayesian (Uninformative Prior)		MSE, Minimax	
η	γ	η	γ	$\hat{\eta}$	Ŷ	$\hat{\eta}$	Ŷ	$\hat{\eta}$	Ŷ
2	2	1.11×10^{-4}	$2.43 imes 10^{-4}$	$2.58 imes 10^{-4}$	5.77×10^{-2}	1.42×10^{-4}	2.06×10^{-2}	2.17×10^{-4}	16×10^{-2}
2	8	$6.93 imes 10^{-6}$	$3.89 imes 10^{-3}$	1.11×10^{-5}	5.61×10^{-2}	1.27×10^{-5}	4.44×10^{-2}	4.28×10^{-4}	13.29×10^{-2}
4	2	$4.43 imes 10^{-4}$	$2.43 imes 10^{-4}$	$6.74 imes 10^{-4}$	1.05×10^{-1}	$6.07 imes 10^{-4}$	2.43×10^{-2}	$8.38 imes 10^{-4}$	14.67×10^{-2}
4	8	2.77×10^{-5}	$3.89 imes 10^{-3}$	3.84×10^{-5}	6.40×10^{-2}	4.33×10^{-5}	3.96×10^{-2}	1.72×10^{-3}	8.59×10^{-2}
8	2	1.77×10^{-3}	$2.43 imes 10^{-4}$	2.26×10^{-3}	1.89×10^{-1}	2.27×10^{-3}	2.35×10^{-2}	3.307×10^{-3}	18.605×10^{-2}
8	8	1.11×10^{-4}	$3.89 imes 10^{-3}$	$1.58 imes 10^{-4}$	7.901×10^{-2}	$1.76 imes 10^{-4}$	$4.51 imes 10^{-2}$	$6.77 imes 10^{-3}$	$8.39 imes 10^{-2}$

Table: MSE of Bayes and minimax TS estimators of the scale and shape parameters, and their corresponding CRLBs.

Appendix: Minimax TS Estimator for Weibull Process

Proposal distribution S: U[1, 20];
 True distribution of θ:

$$f(\theta) = \begin{cases} \frac{1}{\log \frac{b}{a}}, \text{ if } a \leq \theta \leq b\\ 0, \text{ otherwise} \end{cases}$$

where
$$a = 1, b = 20$$

Appendix: Minimax TS Estimator for Weibull Process

Proposal distribution S:

$$f(heta) = egin{cases} rac{1}{\log rac{b}{a}}, ext{ if } a \leq heta \leq b \ 0, ext{ otherwise} \end{cases}$$

where a = 1, b = 20True distribution of θ : $\mathcal{U}[1, 20]$

