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Introduction

• Consider the following optimization problem

min
x∈Rn

f(x) ≜ 1
2x

⊤Ax− b⊤x

• f(x) is a convex quadratic function
• Stationary point x∗, obtained by ∇f(x∗) = 0, is the global minimum
• Ax∗ = b

• Solution to the optimization problem ⇐⇒ solution to system
of linear equation Ax = b

• Suppose A is symmetric positive definite =⇒ x∗ = A−1b
• Computationally expensive O(n3)

• Remedy?
Adopt an iterative scheme to solve the optimization problem
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Iterative Procedure

• Idea: Construct sequence {xk} such that
• f(xk+1) < f(xk), k = 0, . . .

• Stop when ∇f(xk) = 0, practical stopping criterion : ||∇f(xk)|| < ϵ

• How do we construct such a sequence?
• Proposed construction : xk+1 = xk + αkdk, αk ∈ R and dk ∈ Rn

• Choices of αk and dk such that f(xk+1) < f(xk) for every k ?

• First order Taylor series approximation of f at xk revelas that

f(x) ≈ f(xk) + (x− xk)⊤∇f(xk),

where x is sufficiently close to xk

• In particular, x = xk+1,

f(xk+1) ≈ f(xk) + αkdk⊤∇f(xk)

• Easy to see f(xk+1) < f(xk) if dk⊤∇f(xk) < 0, and αk > 0
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Iterative Procedure

• Descent direction : Choose dk such that ∇f(xk)⊤dk < 0. More
generally, D := {d ∈ Rn : ∇f(xk)⊤d < 0} is the set of descent
directions.

First order approximation of S at

• For first order Taylor approximation to hold, we need αk to be
not too large.

• How do we find αk?
• Exact line search : step size αk = argmin

α>0
f(xk + αdk)

4
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Conjugate Descent Method: Quick Overview

• Recall:

min
x∈Rn

f(x) ≜ 1
2x

⊤Ax− b⊤x,

where A is symmetric positive definite matrix.

• Suppose we start at some initial point x0 ∈ Rn in the iterative
procedure.

• Let {d0, . . . ,dn−1} be a set of linearly independent directions.
Note that this is a maximal linearly independent set in Rn, and
hence it forms a basis.

5
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Conjugate Descent Method: Quick Overview

• x− x0 ∈ Rn =⇒ x− x0 =
∑n−1

i=0 αidi =⇒ x = x0 +
∑n−1

i=0 αidi

• Easy to see

min
x∈Rn

f(x) ≡ min
α∈Rn

Ψ(α)

, where
Ψ(α) =

1
2

(
x0 +

∑n−1
i=0 αidi

)⊤
A
(
x0 +

∑n−1
i=0 αidi

)
− b⊤

(
x0 +

∑n−1
i=0 αidi

)
,

α = (α0 . . . αn−1)
T

• Ψ(α) is not separable in terms of αi.What do we do now?

• Let D := (d0|d1| . . . |dn−1)

6
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Conjugate Descent Method: Quick Overview

• Now, Ψ(α) = 1
2α

⊤ D⊤AD︸ ︷︷ ︸
:=Q

α+ (Ax0 − b)⊤Dα+
1
2x0

⊤Ax0 − b⊤x0︸ ︷︷ ︸
constant

• Let us look at the structure of Q

Q = D⊤AD =


d0⊤Ad0 . . . d0⊤Adn−1

... . . .
...

dn−1⊤Ad0 . . . dn−1⊤Adn−1


• Q will be diagonal if di⊤Adj = 0, ∀ i ̸= j and Ψ(α) will then be
separable in terms of α0, . . . , αn−1.

Ψ(α) =
1
2

n−1∑
i=0

[
(x0 + αidi)⊤ A (x0 + αidi)− 2b⊤ (x0 + αidi)

]
+ constant

Definition
Let A ∈ Rn×n be a symmetric posititve definite matrix. The vectors
{d0, . . . ,dn−1} are A− conjugate if diTAdj = 0, ∀ i ̸= j.
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Conjugate Descent Method: Quick Overview

Claim
If {d0, . . . ,dn−1} are A− conjugate, then they are linearly
independent.

Proof.

n−1∑
i=0

µidi = 0 =⇒ di⊤A
n−1∑
j=0

µjdj = 0

=⇒
n−1∑
j=0

µjdi⊤Adj = 0

=⇒ µidi⊤Adi = 0 (∵ di⊤Adj = 0 ∀ i ̸= j(A− conjugacy))

=⇒ µi = 0 (∵ A is p.d. and ∴ di⊤Adi ̸= 0)

Therefore,
∑n−1

i=0 µidi = 0 =⇒ µi = 0, and hence, {d0, . . . ,dn−1} is a
linearly independent set.
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Conjugate Descent Method: Quick Overview

• ∂Ψ
∂αi

= 0 =⇒ αi
∗ = −di⊤(Ax0−b)

di⊤Adi

• Finally, x∗ = x0 +
∑n−1

i=0 αi
∗di

Therefore, solution to the minimization of convex quadratic function
is the linear combination of conjugate directions d0, . . . ,dn−1 and
any arbitrary initial point x0.

Questions

• Given A, is there a set of A− conjugate vectors?
• If yes, how do we obtain them iteratively?
• How does sequence xk with xk+1 = xk + αkdk converge to x∗ in
atmost n iterations?
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Existence of Conjugate Directions



Conjugate Directions: Existence

• A is symmetric p.d. =⇒ A has n mutually orthogonal
eigenvectors

• Suppose v0 and v1 are two orthogonal eigenvectors of A. Then,
v0⊤v1 = 0.

• Av0 = λ0v0 =⇒ v1⊤Av0 = λ0v1⊤v0 =⇒ v1⊤Av0 = 0 =⇒ v0, v1
are A− conjugate.

• Easy to see vi⊤Avj = 0, ∀ i ̸= j, if v0, . . . , vn−1 are n orthogonal
eigenvectors of A.

∴ Conjugate directions exist!
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Convergence of Conjugate
Descent: Expanding Subspace
Theorem



Convergence of Conjugate Descent

min
x∈Rn

f(x) ≜ 1
2x

⊤Ax− b⊤x

• Let Bk denote the subspace spanned by d0, . . . ,dk−1.
• Easy to verify that Bk ⊂ Bk+1

• Let x0 ∈ Rn be any arbitrary initial point and iterative scheme be
xk+1 = xk + αkdk.

• αk is obtained by exact line search: αk = argmin
α>0

f(xk + αdk)

Claim
xk = argmin

x∈ x0+Bk

f(x). That is, f(xk) ≤ f(x), ∀ x ∈ x0 + Bk

Let us try to prove this claim. We shall denote the gradient ∇f(xk) by
gk.
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Convergence of Conjugate Descent

First note that gk = Axk − b.

Due to exact line search, αk should
satisfy the first order necessary condition. That is,
∇f(xk + αkdK)⊤dk = 0 =⇒ gk+1⊤dk = 0, ∀ k = 0, . . . ,n− 1
xk = xk−1 + αk−1dk−1. Using telescopic sum until j, we obtain
xk = xj +

∑k−1
i=j αidi, where j ∈ {0, . . . , k− 1}

∴ Axk − b = Axj − b+
∑k−1

i=j αiAdi
=⇒ gk = gj +

∑k−1
i=j αiAdi

=⇒ gk⊤dj−1 = gj⊤dj−1︸ ︷︷ ︸
=0(first order necessary condition)

+
∑k−1

i=j αi di⊤Adj−1︸ ︷︷ ︸
=0(A-conjugacy)

= 0.

∴ gk⊤dj = 0 ∀j = 0, . . . , k− 1
In other words, gk ⊥ Bk.
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Convergence of Conjugate Descent

We need to show that f(xk) ≤ f(x), ∀x ∈ x0 + Bk.
Or, equivalently

f(x0 +
k−1∑
j=0

αjdj) ≤ f(x0 +
k−1∑
j=0

µjdj), µj ∈ R

Using the Taylor series expansion of f around x0,we get,

f(x0) +
k−1∑
j=0

(αjg0⊤dj +
1
2αj

2dj⊤Adj) ≤ f(x0) +
k−1∑
j=0

(µjg0⊤dj +
1
2µj

2dj⊤Adj)

Remember, αj = argmin
α

f(xj + αdj).Therefore,

f(xj + αjdj) ≤ f(xj + µjdj), ∀ j ∈ {0, . . . ,n− 1} (∵ αj is the minimizer)

Again, using Taylor series expansion of f around xj,we get,

f(xj) + αjgj⊤dj +
1
2αj

2djTAdj ≤ f(xj) + µjgj⊤dj +
1
2µj

2djTAdj
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Convergence of Conjugate Descent

Claim
gj⊤dj = g0⊤dj, ∀ j

Proof.
xj = x0 +

∑j−1
i=0 αidi

=⇒ Axj − b = Ax0 − b+
∑j−1

i=0 αiAdi
=⇒ gj = g0 +

∑j−1
i=0 αiAdi

=⇒ gj⊤dj = g0⊤dj +
∑j−1

i=0 αidi
⊤Adj

∴ gj⊤ = g0⊤dj ∀j

∴ αjg0⊤dj + 1
2αj

2djTAdj ≤ µjg0⊤dj + 1
2µj

2djTAdj
Therefore, by summing over j we get,

f(x0) +
k−1∑
j=0

(αjg0⊤dj +
1
2αj

2dj⊤Adj) ≤ f(x0) +
k−1∑
j=0

(µjg0⊤dj +
1
2µj

2dj⊤Adj)

=⇒ f(x0 +
∑k−1

j=0 αjdj) ≤ f(x0 +
∑k−1

j=0 µjdj), µj ∈ R

∴ f(xk) ≤ f(x) ∀ x ∈ x0 + Bk
So, at nth iteration, f(xn) ≤ f(x) ∀ x ∈ x0 + Bn. But, x0 + Bn = Rn.

Hence, xn = x∗

14
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Procedure to Obtain Conjugate Directions

We use Gram-Schmidt procedure to obtain conjugate directions
d0, . . . ,dn−1. . To this end, we need to start with a linearly
independent set.
Suppose {−g0, . . . ,−gn−1} is a linearly independent set (We will
show this shortly).

• Let d0 = −g0
• dk = −gk +

∑k−1
j=0 βjdj, k = 1, . . . ,n− 1

But, we want d0, . . . ,dn−1 to be A− conjugate vectors. Therefore,

di⊤Adk = −di⊤Agk +
k−1∑
j=0

βidi⊤Adj, i = 0, . . . , k− 1

∴ 0 = −di⊤Agk + βidi⊤Adi, i = 0, . . . , k− 1

=⇒ βi =
gk⊤Adi
di⊤Adi

, ∴ dk = −gk +
∑k−1

j=0

(
gk⊤Adj
djTAdj

)
dj

15
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Procedure to Obtain Conjugate Directions

Now, we show that {−g0, . . . ,−gn−1} is a linearly independent set.
Note that span{d0, . . . ,dk−1} = span{−g0, . . . ,−gk−1}.
We already established that gk ⊥ Bk.
=⇒ −gk ⊥ span{d0, . . . ,dk−1}.
∴ −gk ⊥ span{−g0, . . . ,−gk−1}
∴ {−g0, . . . ,−gn−1} is a linearly independent set.
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Procedure to Obtain Conjugate Directions

Thus, we have

d0 = −g0

dk = −gk +
k−1∑
j=0

(
gk⊤Adj
djTAdj

)
dj ∀ k = 1, . . . ,n− 1

But, the update still depends on A and we need to get rid of that. To
this end, note that xj+1 = xj + αjdj =⇒ gj+1 = gj + αjAdj.
Therefore,

Adj =
1
αj
(gj+1 − gj)

Hence,

dk = −gk +
k−1∑
j=0

(
gkT(gj+1 − gj)
djT(gj+1 − gj)

)
dj

dk = −gk +
(

gkTgk
dk−1T(gk − gk−1)

)
dk−1

17



Procedure to Obtain Conjugate Directions

Thus, we have

d0 = −g0

dk = −gk +
k−1∑
j=0

(
gk⊤Adj
djTAdj

)
dj ∀ k = 1, . . . ,n− 1

But, the update still depends on A and we need to get rid of that. To
this end, note that xj+1 = xj + αjdj =⇒ gj+1 = gj + αjAdj.
Therefore,

Adj =
1
αj
(gj+1 − gj)

Hence,

dk = −gk +
k−1∑
j=0

(
gkT(gj+1 − gj)
djT(gj+1 − gj)

)
dj

dk = −gk +
(

gkTgk
dk−1T(gk − gk−1)

)
dk−1

17



Procedure to Obtain Conjugate Directions

Thus, we have

d0 = −g0

dk = −gk +
k−1∑
j=0

(
gk⊤Adj
djTAdj

)
dj ∀ k = 1, . . . ,n− 1

But, the update still depends on A and we need to get rid of that.

To
this end, note that xj+1 = xj + αjdj =⇒ gj+1 = gj + αjAdj.
Therefore,

Adj =
1
αj
(gj+1 − gj)

Hence,

dk = −gk +
k−1∑
j=0

(
gkT(gj+1 − gj)
djT(gj+1 − gj)

)
dj

dk = −gk +
(

gkTgk
dk−1T(gk − gk−1)

)
dk−1

17



Procedure to Obtain Conjugate Directions

Thus, we have

d0 = −g0

dk = −gk +
k−1∑
j=0

(
gk⊤Adj
djTAdj

)
dj ∀ k = 1, . . . ,n− 1

But, the update still depends on A and we need to get rid of that. To
this end, note that xj+1 = xj + αjdj =⇒ gj+1 = gj + αjAdj.

Therefore,
Adj =

1
αj
(gj+1 − gj)

Hence,

dk = −gk +
k−1∑
j=0

(
gkT(gj+1 − gj)
djT(gj+1 − gj)

)
dj

dk = −gk +
(

gkTgk
dk−1T(gk − gk−1)

)
dk−1

17



Procedure to Obtain Conjugate Directions

Thus, we have

d0 = −g0

dk = −gk +
k−1∑
j=0

(
gk⊤Adj
djTAdj

)
dj ∀ k = 1, . . . ,n− 1

But, the update still depends on A and we need to get rid of that. To
this end, note that xj+1 = xj + αjdj =⇒ gj+1 = gj + αjAdj.
Therefore,

Adj =
1
αj
(gj+1 − gj)

Hence,

dk = −gk +
k−1∑
j=0

(
gkT(gj+1 − gj)
djT(gj+1 − gj)

)
dj

dk = −gk +
(

gkTgk
dk−1T(gk − gk−1)

)
dk−1

17



Procedure to Obtain Conjugate Directions

Thus, we have

d0 = −g0

dk = −gk +
k−1∑
j=0

(
gk⊤Adj
djTAdj

)
dj ∀ k = 1, . . . ,n− 1

But, the update still depends on A and we need to get rid of that. To
this end, note that xj+1 = xj + αjdj =⇒ gj+1 = gj + αjAdj.
Therefore,

Adj =
1
αj
(gj+1 − gj)

Hence,

dk = −gk +
k−1∑
j=0

(
gkT(gj+1 − gj)
djT(gj+1 − gj)

)
dj

dk = −gk +
(

gkTgk
dk−1T(gk − gk−1)

)
dk−1

17



Procedure to Obtain Conjugate Directions

Thus, we have

d0 = −g0

dk = −gk +
k−1∑
j=0

(
gk⊤Adj
djTAdj

)
dj ∀ k = 1, . . . ,n− 1

But, the update still depends on A and we need to get rid of that. To
this end, note that xj+1 = xj + αjdj =⇒ gj+1 = gj + αjAdj.
Therefore,

Adj =
1
αj
(gj+1 − gj)

Hence,

dk = −gk +
k−1∑
j=0

(
gkT(gj+1 − gj)
djT(gj+1 − gj)

)
dj

dk = −gk +
(

gkTgk
dk−1T(gk − gk−1)

)
dk−1

17



Procedure to Obtain Conjugate Directions

Due to exact line search, gkTdk−1 = 0.Note that,

dk−1 = −gk−1 + βk−2dk−2

=⇒
−dk−1Tgk−1 = gk−1Tgk−1 + βk−2gk−1Tdk−2

Therefore,

dk = −gk +
(

gkTgk
gk−1Tgk−1

)
dk−1, k = 1, . . . ,n− 1

The above update is called Fletcher-Reeves update
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Conclusion

• Solution to convex quadratic problem ⇐⇒ solution to system
of linear equations

• The curse of inverse computation can be avoided if the Hessian
matrix is positive definite

• Conjugate gradient (descent) method finds the optimal solution
in at most n iterations
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