A Short Tutorial on Conjugate Gradient Method

 FEM3220 Matrix Algebra PresentationBraghadeesh Lakshminarayanan
June 22, 2022
Division of DCS, KTH Royal Institute of Technology

Table of contents

1. Introduction
2. Iterative Procedure
3. Existence of Conjugate Directions
4. Convergence of Conjugate Descent: Expanding Subspace Theorem
5. Procedure to Obtain Conjugate Directions: Gram-Schmidt Procedure
6. Conclusion

Introduction

Introduction

Introduction

- Consider the following optimization problem

Introduction

- Consider the following optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

Introduction

- Consider the following optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

- $f(x)$ is a convex quadratic function

Introduction

- Consider the following optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

- $f(x)$ is a convex quadratic function
- Stationary point x^{*}, obtained by $\nabla f\left(x^{*}\right)=0$, is the global minimum

Introduction

- Consider the following optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

- $f(x)$ is a convex quadratic function
- Stationary point x^{*}, obtained by $\nabla f\left(x^{*}\right)=0$, is the global minimum
- $A x^{*}=b$

Introduction

- Consider the following optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

- $f(x)$ is a convex quadratic function
- Stationary point x^{*}, obtained by $\nabla f\left(x^{*}\right)=0$, is the global minimum
- $A x^{*}=b$
- Solution to the optimization problem \Longleftrightarrow solution to system of linear equation $A x=b$

Introduction

- Consider the following optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

- $f(x)$ is a convex quadratic function
- Stationary point x^{*}, obtained by $\nabla f\left(x^{*}\right)=0$, is the global minimum
- $A x^{*}=b$
- Solution to the optimization problem \Longleftrightarrow solution to system of linear equation $A x=b$
- Suppose A is symmetric positive definite $\Longrightarrow x^{*}=A^{-1} b$

Introduction

- Consider the following optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

- $f(x)$ is a convex quadratic function
- Stationary point x^{*}, obtained by $\nabla f\left(x^{*}\right)=0$, is the global minimum
- $A x^{*}=b$
- Solution to the optimization problem \Longleftrightarrow solution to system of linear equation $A x=b$
- Suppose A is symmetric positive definite $\Longrightarrow x^{*}=A^{-1} b$
- Computationally expensive $\mathcal{O}\left(n^{3}\right)$

Introduction

- Consider the following optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

- $f(x)$ is a convex quadratic function
- Stationary point x^{*}, obtained by $\nabla f\left(x^{*}\right)=0$, is the global minimum
- $A x^{*}=b$
- Solution to the optimization problem \Longleftrightarrow solution to system of linear equation $A x=b$
- Suppose A is symmetric positive definite $\Longrightarrow x^{*}=A^{-1} b$
- Computationally expensive $\mathcal{O}\left(n^{3}\right)$
- Remedy?

Introduction

- Consider the following optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

- $f(x)$ is a convex quadratic function
- Stationary point x^{*}, obtained by $\nabla f\left(x^{*}\right)=0$, is the global minimum
- $A x^{*}=b$
- Solution to the optimization problem \Longleftrightarrow solution to system of linear equation $A x=b$
- Suppose A is symmetric positive definite $\Longrightarrow x^{*}=A^{-1} b$
- Computationally expensive $\mathcal{O}\left(n^{3}\right)$
- Remedy?

Adopt an iterative scheme to solve the optimization problem

Iterative Procedure

Iterative Procedure

Iterative Procedure

- Idea: Construct sequence $\left\{x_{k}\right\}$ such that

Iterative Procedure

- Idea: Construct sequence $\left\{x_{k}\right\}$ such that

$$
\text { - } f\left(x_{k+1}\right)<f\left(x_{k}\right), k=0, \ldots
$$

Iterative Procedure

- Idea: Construct sequence $\left\{x_{k}\right\}$ such that
- $f\left(x_{k+1}\right)<f\left(x_{k}\right), k=0, \ldots$
- Stop when $\nabla f\left(x_{k}\right)=0$, practical stopping criterion : $\left\|\nabla f\left(x_{k}\right)\right\|<\epsilon$

Iterative Procedure

- Idea: Construct sequence $\left\{x_{k}\right\}$ such that
- $f\left(x_{k+1}\right)<f\left(x_{k}\right), k=0, \ldots$
- Stop when $\nabla f\left(x_{k}\right)=0$, practical stopping criterion : $\left\|\nabla f\left(x_{k}\right)\right\|<\epsilon$
- How do we construct such a sequence?

Iterative Procedure

- Idea: Construct sequence $\left\{x_{k}\right\}$ such that
- $f\left(x_{k+1}\right)<f\left(x_{k}\right), k=0, \ldots$
- Stop when $\nabla f\left(x_{k}\right)=0$, practical stopping criterion : \| $\left\|f\left(x_{k}\right)\right\|<\epsilon$
- How do we construct such a sequence?
- Proposed construction : $x_{k+1}=x_{k}+\alpha_{k} d_{k}, \alpha_{k} \in \mathbb{R}$ and $d_{k} \in \mathbb{R}^{n}$

Iterative Procedure

- Idea: Construct sequence $\left\{x_{k}\right\}$ such that
- $f\left(x_{k+1}\right)<f\left(x_{k}\right), k=0, \ldots$
- Stop when $\nabla f\left(x_{k}\right)=0$, practical stopping criterion : \| $\left\|f\left(x_{k}\right)\right\|<\epsilon$
- How do we construct such a sequence?
- Proposed construction : $x_{k+1}=x_{k}+\alpha_{k} d_{k}, \alpha_{k} \in \mathbb{R}$ and $d_{k} \in \mathbb{R}^{n}$
- Choices of α_{k} and d_{k} such that $f\left(x_{k+1}\right)<f\left(x_{k}\right)$ for every k ?

Iterative Procedure

- Idea: Construct sequence $\left\{x_{k}\right\}$ such that
- $f\left(x_{k+1}\right)<f\left(x_{k}\right), k=0, \ldots$
- Stop when $\nabla f\left(x_{k}\right)=0$, practical stopping criterion : \| $\left\|f\left(x_{k}\right)\right\|<\epsilon$
- How do we construct such a sequence?
- Proposed construction : $x_{k+1}=x_{k}+\alpha_{k} d_{k}, \alpha_{k} \in \mathbb{R}$ and $d_{k} \in \mathbb{R}^{n}$
- Choices of α_{k} and d_{k} such that $f\left(x_{k+1}\right)<f\left(x_{k}\right)$ for every k ?
- First order Taylor series approximation of f at x_{k} revelas that

Iterative Procedure

- Idea: Construct sequence $\left\{x_{k}\right\}$ such that
- $f\left(x_{k+1}\right)<f\left(x_{k}\right), k=0, \ldots$
- Stop when $\nabla f\left(x_{k}\right)=0$, practical stopping criterion : $\left\|\nabla f\left(x_{k}\right)\right\|<\epsilon$
- How do we construct such a sequence?
- Proposed construction : $x_{k+1}=x_{k}+\alpha_{k} d_{k}, \alpha_{k} \in \mathbb{R}$ and $d_{k} \in \mathbb{R}^{n}$
- Choices of α_{k} and d_{k} such that $f\left(x_{k+1}\right)<f\left(x_{k}\right)$ for every k ?
- First order Taylor series approximation of f at x_{k} revelas that

$$
f(x) \approx f\left(x_{k}\right)+\left(x-x_{k}\right)^{\top} \nabla f\left(x_{k}\right)
$$

where x is sufficiently close to x_{k}

Iterative Procedure

- Idea: Construct sequence $\left\{x_{k}\right\}$ such that
- $f\left(x_{k+1}\right)<f\left(x_{k}\right), k=0, \ldots$
- Stop when $\nabla f\left(x_{k}\right)=0$, practical stopping criterion : \| $\left\|f\left(x_{k}\right)\right\|<\epsilon$
- How do we construct such a sequence?
- Proposed construction : $x_{k+1}=x_{k}+\alpha_{k} d_{k}, \alpha_{k} \in \mathbb{R}$ and $d_{k} \in \mathbb{R}^{n}$
- Choices of α_{k} and d_{k} such that $f\left(x_{k+1}\right)<f\left(x_{k}\right)$ for every k ?
- First order Taylor series approximation of f at x_{k} revelas that

$$
f(x) \approx f\left(x_{k}\right)+\left(x-x_{k}\right)^{\top} \nabla f\left(x_{k}\right)
$$

where x is sufficiently close to x_{k}

- In particular, $x=x_{k+1}$,

Iterative Procedure

- Idea: Construct sequence $\left\{x_{k}\right\}$ such that
- $f\left(x_{k+1}\right)<f\left(x_{k}\right), k=0, \ldots$
- Stop when $\nabla f\left(x_{k}\right)=0$, practical stopping criterion : \| $\left\|f\left(x_{k}\right)\right\|<\epsilon$
- How do we construct such a sequence?
- Proposed construction : $x_{k+1}=x_{k}+\alpha_{k} d_{k}, \alpha_{k} \in \mathbb{R}$ and $d_{k} \in \mathbb{R}^{n}$
- Choices of α_{k} and d_{k} such that $f\left(x_{k+1}\right)<f\left(x_{k}\right)$ for every k ?
- First order Taylor series approximation of f at x_{k} revelas that

$$
f(x) \approx f\left(x_{k}\right)+\left(x-x_{k}\right)^{\top} \nabla f\left(x_{k}\right)
$$

where x is sufficiently close to x_{k}

- In particular, $x=x_{k+1}$,

$$
f\left(x_{k+1}\right) \approx f\left(x_{k}\right)+\alpha_{k} d_{k}^{\top} \nabla f\left(x_{k}\right)
$$

Iterative Procedure

- Idea: Construct sequence $\left\{x_{k}\right\}$ such that
- $f\left(x_{k+1}\right)<f\left(x_{k}\right), k=0, \ldots$
- Stop when $\nabla f\left(x_{k}\right)=0$, practical stopping criterion : \| $\left\|f\left(x_{k}\right)\right\|<\epsilon$
- How do we construct such a sequence?
- Proposed construction : $x_{k+1}=x_{k}+\alpha_{k} d_{k}, \alpha_{k} \in \mathbb{R}$ and $d_{k} \in \mathbb{R}^{n}$
- Choices of α_{k} and d_{k} such that $f\left(x_{k+1}\right)<f\left(x_{k}\right)$ for every k ?
- First order Taylor series approximation of f at x_{k} revelas that

$$
f(x) \approx f\left(x_{k}\right)+\left(x-x_{k}\right)^{\top} \nabla f\left(x_{k}\right)
$$

where x is sufficiently close to x_{k}

- In particular, $x=x_{k+1}$,

$$
f\left(x_{k+1}\right) \approx f\left(x_{k}\right)+\alpha_{k} d_{k}^{\top} \nabla f\left(x_{k}\right)
$$

- Easy to see $f\left(x_{k+1}\right)<f\left(x_{k}\right)$ if $d_{k}^{\top} \nabla f\left(x_{k}\right)<0$, and $\alpha_{k}>0$

Iterative Procedure

Iterative Procedure

- Descent direction: Choose d_{k} such that $\nabla f\left(x_{k}\right)^{\top} d_{k}<0$. More generally, $\mathcal{D}:=\left\{d \in \mathbb{R}^{n}: \nabla f\left(x_{k}\right)^{\top} d<0\right\}$ is the set of descent directions.

Iterative Procedure

- Descent direction: Choose d_{k} such that $\nabla f\left(x_{k}\right)^{\top} d_{k}<0$. More generally, $\mathcal{D}:=\left\{d \in \mathbb{R}^{n}: \nabla f\left(x_{k}\right)^{\top} d<0\right\}$ is the set of descent directions.

Iterative Procedure

- Descent direction: Choose d_{k} such that $\nabla f\left(x_{k}\right)^{\top} d_{k}<0$. More generally, $\mathcal{D}:=\left\{d \in \mathbb{R}^{n}: \nabla f\left(x_{k}\right)^{\top} d<0\right\}$ is the set of descent directions.

- For first order Taylor approximation to hold, we need α_{k} to be not too large.

Iterative Procedure

- Descent direction: Choose d_{k} such that $\nabla f\left(x_{k}\right)^{\top} d_{k}<0$. More generally, $\mathcal{D}:=\left\{d \in \mathbb{R}^{n}: \nabla f\left(x_{k}\right)^{\top} d<0\right\}$ is the set of descent directions.

- For first order Taylor approximation to hold, we need α_{k} to be not too large.
- How do we find α_{k} ?

Iterative Procedure

- Descent direction : Choose d_{k} such that $\nabla f\left(x_{k}\right)^{\top} d_{k}<0$. More generally, $\mathcal{D}:=\left\{d \in \mathbb{R}^{n}: \nabla f\left(x_{k}\right)^{\top} d<0\right\}$ is the set of descent directions.

- For first order Taylor approximation to hold, we need α_{k} to be not too large.
- How do we find α_{k} ?
- Exact line search : step size $\alpha_{k}=\underset{\alpha>0}{\arg \min } f\left(x_{k}+\alpha d_{k}\right)$

Conjugate Descent Method: Quick Overview

Conjugate Descent Method: Quick Overview

- Recall:

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x,
$$

where A is symmetric positive definite matrix.

Conjugate Descent Method: Quick Overview

- Recall:

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x,
$$

where A is symmetric positive definite matrix.

- Suppose we start at some initial point $x_{0} \in \mathbb{R}^{n}$ in the iterative procedure.

Conjugate Descent Method: Quick Overview

- Recall:

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

where A is symmetric positive definite matrix.

- Suppose we start at some initial point $x_{0} \in \mathbb{R}^{n}$ in the iterative procedure.
- Let $\left\{d_{0}, \ldots, d_{n-1}\right\}$ be a set of linearly independent directions. Note that this is a maximal linearly independent set in \mathbb{R}^{n}, and hence it forms a basis.

Conjugate Descent Method: Quick Overview

Conjugate Descent Method: Quick Overview

$\cdot x-x_{0} \in \mathbb{R}^{n} \Longrightarrow x-x_{0}=\sum_{i=0}^{n-1} \alpha_{i} d_{i} \Longrightarrow x=x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}$

Conjugate Descent Method: Quick Overview

$\cdot x-x_{0} \in \mathbb{R}^{n} \Longrightarrow x-x_{0}=\sum_{i=0}^{n-1} \alpha_{i} d_{i} \Longrightarrow x=x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}$

- Easy to see

$$
\min _{x \in \mathbb{R}^{n}} f(x) \equiv \min _{\alpha \in \mathbb{R}^{n}} \Psi(\alpha)
$$

, where
$\psi(\alpha)=$
$\frac{1}{2}\left(x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}\right)^{\top} A\left(x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}\right)-b^{\top}\left(x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}\right)$,
$\alpha=\left(\alpha_{0} \ldots \alpha_{n-1}\right)^{\top}$

Conjugate Descent Method: Quick Overview

$\cdot x-x_{0} \in \mathbb{R}^{n} \Longrightarrow x-x_{0}=\sum_{i=0}^{n-1} \alpha_{i} d_{i} \Longrightarrow x=x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}$

- Easy to see

$$
\min _{x \in \mathbb{R}^{n}} f(x) \equiv \min _{\alpha \in \mathbb{R}^{n}} \Psi(\alpha)
$$

, where
$\psi(\alpha)=$
$\frac{1}{2}\left(x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}\right)^{\top} A\left(x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}\right)-b^{\top}\left(x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}\right)$,
$\alpha=\left(\alpha_{0} \ldots \alpha_{n-1}\right)^{\top}$

- $\Psi(\alpha)$ is not separable in terms of α_{i}.

Conjugate Descent Method: Quick Overview

$\cdot x-x_{0} \in \mathbb{R}^{n} \Longrightarrow x-x_{0}=\sum_{i=0}^{n-1} \alpha_{i} d_{i} \Longrightarrow x=x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}$

- Easy to see

$$
\min _{x \in \mathbb{R}^{n}} f(x) \equiv \min _{\alpha \in \mathbb{R}^{n}} \Psi(\alpha)
$$

, where

$$
\begin{aligned}
& \Psi(\alpha)= \\
& \frac{1}{2}\left(x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}\right)^{\top} A\left(x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}\right)-b^{\top}\left(x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}\right) \\
& \alpha=\left(\alpha_{0} \ldots \alpha_{n-1}\right)^{\top}
\end{aligned}
$$

- $\Psi(\alpha)$ is not separable in terms of α_{j}.What do we do now?

Conjugate Descent Method: Quick Overview

$\cdot x-x_{0} \in \mathbb{R}^{n} \Longrightarrow x-x_{0}=\sum_{i=0}^{n-1} \alpha_{i} d_{i} \Longrightarrow x=x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}$

- Easy to see

$$
\min _{x \in \mathbb{R}^{n}} f(x) \equiv \min _{\alpha \in \mathbb{R}^{n}} \Psi(\alpha)
$$

, where

$$
\begin{aligned}
& \Psi(\alpha)= \\
& \frac{1}{2}\left(x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}\right)^{\top} A\left(x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}\right)-b^{\top}\left(x_{0}+\sum_{i=0}^{n-1} \alpha_{i} d_{i}\right) \\
& \alpha=\left(\alpha_{0} \ldots \alpha_{n-1}\right)^{\top}
\end{aligned}
$$

- $\Psi(\alpha)$ is not separable in terms of α_{j}.What do we do now?
- Let $D:=\left(d_{0}\left|d_{1}\right| \ldots \mid d_{n-1}\right)$

Conjugate Descent Method: Quick Overview

Conjugate Descent Method: Quick Overview

- Now, $\Psi(\alpha)=\frac{1}{2} \alpha^{\top} \underbrace{D^{\top} A D}_{:=0} \alpha+\left(A x_{0}-b\right)^{\top} D \alpha+\underbrace{\frac{1}{2} x_{0}^{\top} A x_{0}-b^{\top} x_{0}}_{\text {constant }}$

Conjugate Descent Method: Quick Overview

- Now, $\Psi(\alpha)=\frac{1}{2} \alpha^{\top} \underbrace{D^{\top} A D}_{:=Q} \alpha+\left(A x_{0}-b\right)^{\top} D \alpha+\underbrace{\frac{1}{2} x_{0}^{\top} A x_{0}-b^{\top} x_{0}}_{\text {constant }}$
- Let us look at the structure of Q

Conjugate Descent Method: Quick Overview

- Now, $\Psi(\alpha)=\frac{1}{2} \alpha^{\top} \underbrace{D^{\top} A D}_{:=0} \alpha+\left(A x_{0}-b\right)^{\top} D \alpha+\underbrace{\frac{1}{2} x_{0}^{\top} A x_{0}-b^{\top} x_{0}}_{\text {constant }}$
- Let us look at the structure of Q

$$
Q=D^{\top} A D=\left(\begin{array}{ccc}
d_{0}^{\top} A d_{0} & \ldots & d_{0}^{\top} A d_{n-1} \\
\vdots & \ldots & \vdots \\
d_{n-1}^{\top} A d_{0} & \ldots & d_{n-1}^{\top} A d_{n-1}
\end{array}\right)
$$

Conjugate Descent Method: Quick Overview

- Now, $\Psi(\alpha)=\frac{1}{2} \alpha^{\top} \underbrace{D^{\top} A D}_{:=Q} \alpha+\left(A x_{0}-b\right)^{\top} D \alpha+\underbrace{\frac{1}{2} x_{0}^{\top} A x_{0}-b^{\top} x_{0}}_{\text {constant }}$
- Let us look at the structure of Q

$$
Q=D^{\top} A D=\left(\begin{array}{ccc}
d_{0}^{\top} A d_{0} & \ldots & d_{0}^{\top} A d_{n-1} \\
\vdots & \ldots & \vdots \\
d_{n-1}^{\top} A d_{0} & \ldots & d_{n-1}^{\top} A d_{n-1}
\end{array}\right)
$$

- Q will be diagonal if $d_{i}^{\top} A d_{j}=0, \forall i \neq j$ and $\Psi(\alpha)$ will then be separable in terms of $\alpha_{0}, \ldots, \alpha_{n-1}$.

Conjugate Descent Method: Quick Overview

- Now, $\Psi(\alpha)=\frac{1}{2} \alpha^{\top} \underbrace{D^{\top} A D}_{:=Q} \alpha+\left(A x_{0}-b\right)^{\top} D \alpha+\underbrace{\frac{1}{2} x_{0}{ }^{\top} A x_{0}-b^{\top} x_{0}}_{\text {constant }}$
- Let us look at the structure of Q

$$
Q=D^{\top} A D=\left(\begin{array}{ccc}
d_{0}{ }^{\top} A d_{0} & \ldots & d_{0}^{\top} A d_{n-1} \\
\vdots & \ldots & \vdots \\
d_{n-1}^{\top} A d_{0} & \ldots & d_{n-1}^{\top} A d_{n-1}
\end{array}\right)
$$

- Q will be diagonal if $d_{i}^{\top} A d_{j}=0, \forall i \neq j$ and $\Psi(\alpha)$ will then be separable in terms of $\alpha_{0}, \ldots, \alpha_{n-1}$.
$\Psi(\alpha)=\frac{1}{2} \sum_{i=0}^{n-1}\left[\left(x_{0}+\alpha_{i} d_{i}\right)^{\top} A\left(x_{0}+\alpha_{i} d_{i}\right)-2 b^{\top}\left(x_{0}+\alpha_{i} d_{i}\right)\right]+$ constant

Conjugate Descent Method: Quick Overview

- Now, $\Psi(\alpha)=\frac{1}{2} \alpha^{\top} \underbrace{D^{\top} A D}_{:=Q} \alpha+\left(A x_{0}-b\right)^{\top} D \alpha+\underbrace{\frac{1}{2} x_{0}^{\top} A x_{0}-b^{\top} x_{0}}_{\text {constant }}$
- Let us look at the structure of Q

$$
Q=D^{\top} A D=\left(\begin{array}{ccc}
d_{0}^{\top} A d_{0} & \ldots & d_{0}^{\top} A d_{n-1} \\
\vdots & \ldots & \vdots \\
d_{n-1}^{\top} A d_{0} & \ldots & d_{n-1}^{\top} A d_{n-1}
\end{array}\right)
$$

- Q will be diagonal if $d_{i}^{\top} A d_{j}=0, \forall i \neq j$ and $\Psi(\alpha)$ will then be separable in terms of $\alpha_{0}, \ldots, \alpha_{n-1}$.
$\Psi(\alpha)=\frac{1}{2} \sum_{i=0}^{n-1}\left[\left(x_{0}+\alpha_{i} d_{i}\right)^{\top} A\left(x_{0}+\alpha_{i} d_{i}\right)-2 b^{\top}\left(x_{0}+\alpha_{i} d_{i}\right)\right]+$ constant

Definition

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric posititve definite matrix. The vectors $\left\{d_{0}, \ldots, d_{n-1}\right\}$ are $A-$ conjugate if $d_{i}^{\top} A d_{j}=0, \forall i \neq j$.

Conjugate Descent Method: Quick Overview

Conjugate Descent Method: Quick Overview

Claim

If $\left\{d_{0}, \ldots, d_{n-1}\right\}$ are A - conjugate, then they are linearly independent.

Conjugate Descent Method: Quick Overview

Claim

If $\left\{d_{0}, \ldots, d_{n-1}\right\}$ are A - conjugate, then they are linearly independent.

Proof.

$$
\begin{aligned}
\sum_{i=0}^{n-1} \mu_{i} d_{i}=0 & \Longrightarrow d_{i}^{\top} A \sum_{j=0}^{n-1} \mu_{j} d_{j}=0 \\
& \Longrightarrow \sum_{j=0}^{n-1} \mu_{j} d_{i}^{\top} A d_{j}=0 \\
& \Longrightarrow \mu_{i} d_{i}^{\top} A d_{i}=0\left(\because d_{i}^{\top} A d_{j}=0 \forall i \neq j(A-\text { conjugacy })\right) \\
& \Longrightarrow \mu_{i}=0\left(\because A \text { is p.d. and } \therefore d_{i}^{\top} A d_{i} \neq 0\right)
\end{aligned}
$$

Therefore, $\sum_{i=0}^{n-1} \mu_{i} d_{i}=0 \Longrightarrow \mu_{i}=0$, and hence, $\left\{d_{0}, \ldots, d_{n-1}\right\}$ is a linearly independent set.

Conjugate Descent Method: Quick Overview

Conjugate Descent Method: Quick Overview

$$
\cdot \frac{\partial \Psi}{\partial \alpha_{i}}=0 \Longrightarrow \alpha_{i}^{*}=-\frac{d_{i}^{\top}\left(A x_{0}-b\right)}{d_{i}^{\top} A d_{i}}
$$

Conjugate Descent Method: Quick Overview

- $\frac{\partial \Psi}{\partial \alpha_{i}}=0 \Longrightarrow \alpha_{i}^{*}=-\frac{d_{i}^{\top}\left(A \alpha_{0}-b\right)}{d_{i}^{\top} A A_{i}}$
- Finally, $x^{*}=x_{0}+\sum_{i=0}^{n-1} \alpha_{i}{ }^{*} d_{i}$

Therefore, solution to the minimization of convex quadratic function is

Conjugate Descent Method: Quick Overview

- $\frac{\partial \Psi}{\partial \alpha_{i}}=0 \Longrightarrow \alpha_{i}^{*}=-\frac{d_{i}^{\top}\left(A \alpha_{0}-b\right)}{d_{i}^{\top} A d_{i}}$
- Finally, $x^{*}=x_{0}+\sum_{i=0}^{n-1} \alpha_{i}{ }^{*} d_{i}$

Therefore, solution to the minimization of convex quadratic function is the linear combination of conjugate directions d_{0}, \ldots, d_{n-1} and any arbitrary initial point x_{0}.

Conjugate Descent Method: Quick Overview

- $\frac{\partial \Psi}{\partial \alpha_{i}}=0 \Longrightarrow \alpha_{i}^{*}=-\frac{d_{i}^{\top}\left(A \alpha_{0}-b\right)}{d_{i}^{\top} A d_{i}}$
- Finally, $x^{*}=x_{0}+\sum_{i=0}^{n-1} \alpha_{i}{ }^{*} d_{i}$

Therefore, solution to the minimization of convex quadratic function is the linear combination of conjugate directions d_{0}, \ldots, d_{n-1} and any arbitrary initial point x_{0}.

Questions

- Given A, is there a set of A - conjugate vectors?

Conjugate Descent Method: Quick Overview

- $\frac{\partial \Psi}{\partial \alpha_{i}}=0 \Longrightarrow \alpha_{i}^{*}=-\frac{d_{i}^{\top}\left(A \alpha_{0}-b\right)}{d_{i}^{\top} A d_{i}}$
- Finally, $x^{*}=x_{0}+\sum_{i=0}^{n-1} \alpha_{i}{ }^{*} d_{i}$

Therefore, solution to the minimization of convex quadratic function is the linear combination of conjugate directions d_{0}, \ldots, d_{n-1} and any arbitrary initial point x_{0}.

Questions

- Given A, is there a set of A - conjugate vectors?
- If yes, how do we obtain them iteratively?

Conjugate Descent Method: Quick Overview

- $\frac{\partial \Psi}{\partial \alpha_{i}}=0 \Longrightarrow \alpha_{i}^{*}=-\frac{d_{i}^{\top}\left(A x_{0}-b\right)}{d_{i}^{\top} A d_{i}}$
- Finally, $x^{*}=x_{0}+\sum_{i=0}^{n-1} \alpha_{i}{ }^{*} d_{i}$

Therefore, solution to the minimization of convex quadratic function is the linear combination of conjugate directions d_{0}, \ldots, d_{n-1} and any arbitrary initial point x_{0}.

Questions

- Given A, is there a set of A - conjugate vectors?
- If yes, how do we obtain them iteratively?
- How does sequence x_{k} with $x_{k+1}=x_{k}+\alpha_{k} d_{k}$ converge to x^{*} in atmost n iterations?

Existence of Conjugate Directions

Conjugate Directions: Existence

Conjugate Directions: Existence

- A is symmetric p.d. $\Longrightarrow A$ has n mutually orthogonal eigenvectors

Conjugate Directions: Existence

- A is symmetric p.d. $\Longrightarrow A$ has n mutually orthogonal eigenvectors
- Suppose v_{0} and v_{1} are two orthogonal eigenvectors of A. Then, $v_{0}{ }^{\top} v_{1}=0$.

Conjugate Directions: Existence

- A is symmetric p.d. $\Longrightarrow A$ has n mutually orthogonal eigenvectors
- Suppose v_{0} and v_{1} are two orthogonal eigenvectors of A. Then, $v_{0}{ }^{\top} v_{1}=0$.
- $A v_{0}=\lambda_{0} v_{0} \Longrightarrow V_{1}^{\top} A v_{0}=\lambda_{0} v_{1}^{\top} V_{0} \Longrightarrow v_{1}^{\top} A v_{0}=0 \Longrightarrow V_{0}, v_{1}$ are A - conjugate.

Conjugate Directions: Existence

- A is symmetric p.d. $\Longrightarrow A$ has n mutually orthogonal eigenvectors
- Suppose v_{0} and v_{1} are two orthogonal eigenvectors of A. Then, $v_{0}{ }^{\top} v_{1}=0$.
- $A v_{0}=\lambda_{0} v_{0} \Longrightarrow V_{1}^{\top} A v_{0}=\lambda_{0} V_{1}^{\top} V_{0} \Longrightarrow V_{1}^{\top} A v_{0}=0 \Longrightarrow V_{0}, v_{1}$ are A - conjugate.
- Easy to see $v_{i}^{\top} A v_{j}=0, \forall i \neq j$, if v_{0}, \ldots, v_{n-1} are n orthogonal eigenvectors of A.

Conjugate Directions: Existence

- A is symmetric p.d. $\Longrightarrow A$ has n mutually orthogonal eigenvectors
- Suppose v_{0} and v_{1} are two orthogonal eigenvectors of A. Then, $v_{0}{ }^{\top} v_{1}=0$.
- $A v_{0}=\lambda_{0} v_{0} \Longrightarrow V_{1}^{\top} A v_{0}=\lambda_{0} V_{1}^{\top} V_{0} \Longrightarrow V_{1}^{\top} A v_{0}=0 \Longrightarrow V_{0}, v_{1}$ are A - conjugate.
- Easy to see $v_{i}{ }^{\top} A v_{j}=0, \forall i \neq j$, if v_{0}, \ldots, v_{n-1} are n orthogonal eigenvectors of A.
\therefore Conjugate directions exist!

Convergence of Conjugate
Descent: Expanding Subspace
Theorem

Convergence of Conjugate Descent

Convergence of Conjugate Descent

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

Convergence of Conjugate Descent

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

- Let \mathcal{B}_{k} denote the subspace spanned by d_{0}, \ldots, d_{k-1}.

Convergence of Conjugate Descent

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

- Let \mathcal{B}_{k} denote the subspace spanned by d_{0}, \ldots, d_{k-1}.
- Easy to verify that $\mathcal{B}_{k} \subset \mathcal{B}_{k+1}$

Convergence of Conjugate Descent

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

- Let \mathcal{B}_{k} denote the subspace spanned by d_{0}, \ldots, d_{k-1}.
- Easy to verify that $\mathcal{B}_{k} \subset \mathcal{B}_{k+1}$
- Let $x_{0} \in \mathbb{R}^{n}$ be any arbitrary initial point and iterative scheme be $x_{k+1}=x_{k}+\alpha_{k} d_{k}$.

Convergence of Conjugate Descent

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

- Let \mathcal{B}_{k} denote the subspace spanned by d_{0}, \ldots, d_{k-1}.
- Easy to verify that $\mathcal{B}_{k} \subset \mathcal{B}_{k+1}$
- Let $x_{0} \in \mathbb{R}^{n}$ be any arbitrary initial point and iterative scheme be $x_{k+1}=x_{k}+\alpha_{k} d_{k}$.
- α_{k} is obtained by exact line search: $\alpha_{k}=\underset{\alpha>0}{\arg \min } f\left(x_{k}+\alpha d_{k}\right)$

Convergence of Conjugate Descent

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

- Let \mathcal{B}_{k} denote the subspace spanned by d_{0}, \ldots, d_{k-1}.
- Easy to verify that $\mathcal{B}_{k} \subset \mathcal{B}_{k+1}$
- Let $x_{0} \in \mathbb{R}^{n}$ be any arbitrary initial point and iterative scheme be $x_{k+1}=x_{k}+\alpha_{k} d_{k}$.
- α_{k} is obtained by exact line search: $\alpha_{k}=\underset{\alpha>0}{\arg \min } f\left(x_{k}+\alpha d_{k}\right)$

Claim

$x_{k}=\underset{x \in x_{0}+\mathcal{B}_{k}}{\arg \min } f(x)$. That is, $f\left(x_{k}\right) \leq f(x), \forall x \in x_{0}+\mathcal{B}_{k}$

Convergence of Conjugate Descent

$$
\min _{x \in \mathbb{R}^{n}} f(x) \triangleq \frac{1}{2} x^{\top} A x-b^{\top} x
$$

- Let \mathcal{B}_{k} denote the subspace spanned by d_{0}, \ldots, d_{k-1}.
- Easy to verify that $\mathcal{B}_{k} \subset \mathcal{B}_{k+1}$
- Let $x_{0} \in \mathbb{R}^{n}$ be any arbitrary initial point and iterative scheme be $x_{k+1}=x_{k}+\alpha_{k} d_{k}$.
- α_{k} is obtained by exact line search: $\alpha_{k}=\underset{\alpha>0}{\arg \min } f\left(x_{k}+\alpha d_{k}\right)$

Claim

$x_{k}=\underset{x \in x_{0}+\mathcal{B}_{k}}{\arg \min } f(x)$. That is, $f\left(x_{k}\right) \leq f(x), \forall x \in x_{0}+\mathcal{B}_{k}$

Let us try to prove this claim. We shall denote the gradient $\nabla f\left(x_{k}\right)$ by g_{k}.

Convergence of Conjugate Descent

First note that $g_{k}=A x_{k}-b$.

Convergence of Conjugate Descent

First note that $g_{k}=A x_{k}-b$. Due to exact line search, α_{k} should satisfy the first order necessary condition.

Convergence of Conjugate Descent

First note that $g_{k}=A x_{k}-b$. Due to exact line search, α_{k} should satisfy the first order necessary condition. That is, $\nabla f\left(x_{k}+\alpha_{k} d_{k}\right)^{\top} d_{k}=0$

Convergence of Conjugate Descent

First note that $g_{k}=A x_{k}-b$. Due to exact line search, α_{k} should satisfy the first order necessary condition. That is, $\nabla f\left(x_{k}+\alpha_{k} d_{k}\right)^{\top} d_{k}=0 \Longrightarrow g_{k+1}^{\top} d_{k}=0, \forall k=0, \ldots, n-1$

Convergence of Conjugate Descent

First note that $g_{k}=A x_{k}-b$. Due to exact line search, α_{k} should satisfy the first order necessary condition. That is, $\nabla f\left(x_{k}+\alpha_{k} d_{k}\right)^{\top} d_{k}=0 \Longrightarrow g_{k+1}^{\top} d_{k}=0, \forall k=0, \ldots, n-1$ $x_{k}=x_{k-1}+\alpha_{k-1} d_{k-1}$.

Convergence of Conjugate Descent

First note that $g_{k}=A x_{k}-b$. Due to exact line search, α_{k} should satisfy the first order necessary condition. That is, $\nabla f\left(x_{k}+\alpha_{k} d_{k}\right)^{\top} d_{k}=0 \Longrightarrow g_{k+1}^{\top} d_{k}=0, \forall k=0, \ldots, n-1$ $x_{k}=x_{k-1}+\alpha_{k-1} d_{k-1}$. Using telescopic sum until j, we obtain $x_{k}=x_{j}+\sum_{i=j}^{k-1} \alpha_{i} d_{i}$, where $j \in\{0, \ldots, k-1\}$

Convergence of Conjugate Descent

First note that $g_{k}=A x_{k}-b$. Due to exact line search, α_{k} should satisfy the first order necessary condition. That is, $\nabla f\left(x_{k}+\alpha_{k} d_{k}\right)^{\top} d_{k}=0 \Longrightarrow g_{k+1}^{\top} d_{k}=0, \forall k=0, \ldots, n-1$ $x_{k}=x_{k-1}+\alpha_{k-1} d_{k-1}$. Using telescopic sum until j, we obtain $x_{k}=x_{j}+\sum_{i=j}^{k-1} \alpha_{i} d_{i}$, where $j \in\{0, \ldots, k-1\}$
$\therefore A x_{k}-b=A x_{j}-b+\sum_{i=j}^{k-1} \alpha_{i} A d_{i}$

Convergence of Conjugate Descent

First note that $g_{k}=A x_{k}-b$. Due to exact line search, α_{k} should satisfy the first order necessary condition. That is,
$\nabla f\left(x_{k}+\alpha_{k} d_{k}\right)^{\top} d_{k}=0 \Longrightarrow g_{k+1}^{\top} d_{k}=0, \forall k=0, \ldots, n-1$
$x_{k}=x_{k-1}+\alpha_{k-1} d_{k-1}$. Using telescopic sum until j, we obtain
$x_{k}=x_{j}+\sum_{i=j}^{k-1} \alpha_{i} d_{i}$, where $j \in\{0, \ldots, k-1\}$
$\therefore A x_{k}-b=A x_{j}-b+\sum_{i=j}^{k-1} \alpha_{i} A d_{i}$
$\Longrightarrow g_{k}=g_{j}+\sum_{i=j}^{k-1} \alpha_{i} A d_{i}$

Convergence of Conjugate Descent

First note that $g_{k}=A x_{k}-b$. Due to exact line search, α_{k} should satisfy the first order necessary condition. That is, $\nabla f\left(x_{k}+\alpha_{k} d_{k}\right)^{\top} d_{k}=0 \Longrightarrow g_{k+1}^{\top} d_{k}=0, \forall k=0, \ldots, n-1$ $x_{k}=x_{k-1}+\alpha_{k-1} d_{k-1}$. Using telescopic sum until j, we obtain $x_{k}=x_{j}+\sum_{i=j}^{k-1} \alpha_{i} d_{i}$, where $j \in\{0, \ldots, k-1\}$
$\therefore A x_{k}-b=A x_{j}-b+\sum_{i=j}^{k-1} \alpha_{i} A d_{i}$
$\Longrightarrow g_{k}=g_{j}+\sum_{i=j}^{k-1} \alpha_{i} A d_{i}$
$\Longrightarrow g_{k}{ }^{\top} d_{j-1}=$

Convergence of Conjugate Descent

First note that $g_{k}=A x_{k}-b$. Due to exact line search, α_{k} should satisfy the first order necessary condition. That is, $\nabla f\left(x_{k}+\alpha_{k} d_{k}\right)^{\top} d_{k}=0 \Longrightarrow g_{k+1}^{\top} d_{k}=0, \forall k=0, \ldots, n-1$ $x_{k}=x_{k-1}+\alpha_{k-1} d_{k-1}$. Using telescopic sum until j, we obtain $x_{k}=x_{j}+\sum_{i=j}^{k-1} \alpha_{i} d_{i}$, where $j \in\{0, \ldots, k-1\}$
$\therefore A x_{k}-b=A x_{j}-b+\sum_{i=j}^{k-1} \alpha_{i} A d_{i}$
$\Longrightarrow g_{k}=g_{j}+\sum_{i=j}^{k-1} \alpha_{i} A d_{i}$
$\Longrightarrow g_{k}{ }^{\top} d_{j-1}=$

$\therefore g_{k}{ }^{\top} d_{j}=0 \forall j=0, \ldots, k-1$

Convergence of Conjugate Descent

First note that $g_{k}=A x_{k}-b$. Due to exact line search, α_{k} should satisfy the first order necessary condition. That is,
$\nabla f\left(x_{k}+\alpha_{k} d_{k}\right)^{\top} d_{k}=0 \Longrightarrow g_{k+1}^{\top} d_{k}=0, \forall k=0, \ldots, n-1$
$x_{k}=x_{k-1}+\alpha_{k-1} d_{k-1}$. Using telescopic sum until j, we obtain
$x_{k}=x_{j}+\sum_{i=j}^{k-1} \alpha_{i} d_{i}$, where $j \in\{0, \ldots, k-1\}$
$\therefore A x_{k}-b=A x_{j}-b+\sum_{i=j}^{k-1} \alpha_{i} A d_{i}$
$\Longrightarrow g_{k}=g_{j}+\sum_{i=j}^{k-1} \alpha_{i} A d_{i}$
$\Longrightarrow g_{k}{ }^{\top} d_{j-1}=$

$\therefore g_{k}{ }^{\top} d_{j}=0 \forall j=0, \ldots, k-1$
In other words, $g_{k} \perp \mathcal{B}_{k}$.

Convergence of Conjugate Descent

Convergence of Conjugate Descent

We need to show that $f\left(x_{k}\right) \leq f(x), \forall x \in x_{0}+\mathcal{B}_{k}$.

Convergence of Conjugate Descent

We need to show that $f\left(x_{k}\right) \leq f(x), \forall x \in x_{0}+\mathcal{B}_{k}$.
Or, equivalently

$$
f\left(x_{0}+\sum_{j=0}^{k-1} \alpha_{j} d_{j}\right) \leq f\left(x_{0}+\sum_{j=0}^{k-1} \mu_{j} d_{j}\right), \quad \mu_{j} \in \mathbb{R}
$$

Convergence of Conjugate Descent

We need to show that $f\left(x_{k}\right) \leq f(x), \forall x \in x_{0}+\mathcal{B}_{k}$.
Or, equivalently

$$
f\left(x_{0}+\sum_{j=0}^{k-1} \alpha_{j} d_{j}\right) \leq f\left(x_{0}+\sum_{j=0}^{k-1} \mu_{j} d_{j}\right), \quad \mu_{j} \in \mathbb{R}
$$

Using the Taylor series expansion of f around x_{0},

Convergence of Conjugate Descent

We need to show that $f\left(x_{k}\right) \leq f(x), \forall x \in x_{0}+\mathcal{B}_{k}$.
Or, equivalently

$$
f\left(x_{0}+\sum_{j=0}^{k-1} \alpha_{j} d_{j}\right) \leq f\left(x_{0}+\sum_{j=0}^{k-1} \mu_{j} d_{j}\right), \quad \mu_{j} \in \mathbb{R}
$$

Using the Taylor series expansion of f around x_{0}, we get,
$f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\alpha_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \alpha_{j}^{2} d_{j}^{\top} A d_{j}\right) \leq f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\mu_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \mu_{j}^{2} d_{j}^{\top} A d_{j}\right)$
Remember, $\alpha_{j}=\underset{\alpha}{\arg \min } f\left(x_{j}+\alpha d_{j}\right)$.

Convergence of Conjugate Descent

We need to show that $f\left(x_{k}\right) \leq f(x), \forall x \in x_{0}+\mathcal{B}_{k}$.
Or, equivalently

$$
f\left(x_{0}+\sum_{j=0}^{k-1} \alpha_{j} d_{j}\right) \leq f\left(x_{0}+\sum_{j=0}^{k-1} \mu_{j} d_{j}\right), \quad \mu_{j} \in \mathbb{R}
$$

Using the Taylor series expansion of f around x_{0}, we get,
$f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\alpha_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \alpha_{j}^{2} d_{j}^{\top} A d_{j}\right) \leq f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\mu_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \mu_{j}^{2} d_{j}^{\top} A d_{j}\right)$
Remember, $\alpha_{j}=\underset{\alpha}{\arg \min } f\left(x_{j}+\alpha d_{j}\right)$.Therefore,
$f\left(x_{j}+\alpha_{j} d_{j}\right) \leq f\left(x_{j}+\mu_{j} d_{j}\right), \forall j \in\{0, \ldots, n-1\} \quad\left(\because \alpha_{j}\right.$ is the minimizer $)$

Convergence of Conjugate Descent

We need to show that $f\left(x_{k}\right) \leq f(x), \forall x \in x_{0}+\mathcal{B}_{k}$.
Or, equivalently

$$
f\left(x_{0}+\sum_{j=0}^{k-1} \alpha_{j} d_{j}\right) \leq f\left(x_{0}+\sum_{j=0}^{k-1} \mu_{j} d_{j}\right), \quad \mu_{j} \in \mathbb{R}
$$

Using the Taylor series expansion of f around x_{0}, we get,
$f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\alpha_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \alpha_{j}^{2} d_{j}^{\top} A d_{j}\right) \leq f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\mu_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \mu_{j}^{2} d_{j}^{\top} A d_{j}\right)$
Remember, $\alpha_{j}=\underset{\alpha}{\arg \min } f\left(x_{j}+\alpha d_{j}\right)$.Therefore,
$f\left(x_{j}+\alpha_{j} d_{j}\right) \leq f\left(x_{j}+\mu_{j} d_{j}\right), \forall j \in\{0, \ldots, n-1\} \quad\left(\because \alpha_{j}\right.$ is the minimizer $)$
Again, using Taylor series expansion of f around x_{j},

Convergence of Conjugate Descent

We need to show that $f\left(x_{k}\right) \leq f(x), \forall x \in x_{0}+\mathcal{B}_{k}$.
Or, equivalently

$$
f\left(x_{0}+\sum_{j=0}^{k-1} \alpha_{j} d_{j}\right) \leq f\left(x_{0}+\sum_{j=0}^{k-1} \mu_{j} d_{j}\right), \quad \mu_{j} \in \mathbb{R}
$$

Using the Taylor series expansion of f around x_{0}, we get,
$f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\alpha_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \alpha_{j}^{2} d_{j}^{\top} A d_{j}\right) \leq f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\mu_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \mu_{j}^{2} d_{j}^{\top} A d_{j}\right)$
Remember, $\alpha_{j}=\underset{\alpha}{\arg \min } f\left(x_{j}+\alpha d_{j}\right)$.Therefore,
$f\left(x_{j}+\alpha_{j} d_{j}\right) \leq f\left(x_{j}+\mu_{j} d_{j}\right), \forall j \in\{0, \ldots, n-1\} \quad\left(\because \alpha_{j}\right.$ is the minimizer $)$
Again, using Taylor series expansion of f around x_{j},we get,

$$
f\left(x_{j}\right)+\alpha_{j} g_{j}^{\top} d_{j}+\frac{1}{2} \alpha_{j}^{2} d_{j}^{\top} A d_{j} \leq f\left(x_{j}\right)+\mu_{j} g_{j}^{\top} d_{j}+\frac{1}{2} \mu_{j}^{2} d_{j}^{\top} A d_{j}
$$

Convergence of Conjugate Descent

Convergence of Conjugate Descent

Claim
 $g_{j}^{\top} d_{j}=g_{0}{ }^{\top} d_{j}, \forall j$

Convergence of Conjugate Descent

Claim

$g_{j}^{\top} d_{j}=g_{0}^{\top} d_{j}, \forall j$

Proof.

$$
\begin{aligned}
& x_{j}=x_{0}+\sum_{i=0}^{j-1} \alpha_{i} d_{i} \\
& \Longrightarrow A x_{j}-b=A x_{0}-b+\sum_{i=0}^{j-1} \alpha_{i} A d_{i} \\
& \Longrightarrow g_{j}=g_{0}+\sum_{i=0}^{j-1} \alpha_{i} A d_{i} \\
& \Longrightarrow g_{j}^{\top} d_{j}=g_{0}^{\top} d_{j}+\sum_{i=0}^{j-1} \alpha_{i} d_{i}^{\top} A d_{j} \\
& \therefore g_{j}^{\top}=g_{0}^{\top} d_{j} \forall j
\end{aligned}
$$

Convergence of Conjugate Descent

Claim

$g_{j}^{\top} d_{j}=g_{0}^{\top} d_{j}, \forall j$

Proof.

$$
\begin{aligned}
& x_{j}=x_{0}+\sum_{i=0}^{j-1} \alpha_{i} d_{i} \\
& \Longrightarrow A x_{j}-b=A x_{0}-b+\sum_{i=0}^{j-1} \alpha_{i} A d_{i} \\
& \Longrightarrow g_{j}=g_{0}+\sum_{i=0}^{j-1} \alpha_{i} A d_{i} \\
& \Longrightarrow g_{j}^{\top} d_{j}=g_{0}{ }^{\top} d_{j}+\sum_{i=0}^{j-1} \alpha_{i} d_{i}^{\top} A d_{j} \\
& \therefore g_{j}^{\top}=g_{0}^{\top} d_{j} \forall j
\end{aligned}
$$

$\therefore \alpha_{j} g_{0}{ }^{\top} d_{j}+\frac{1}{2} \alpha_{j}^{2} d_{j}^{\top} A d_{j} \leq \mu_{j} g_{0}{ }^{\top} d_{j}+\frac{1}{2} \mu_{j}{ }^{2} d_{j}^{\top} A d_{j}$

Convergence of Conjugate Descent

Claim

$g_{j}^{\top} d_{j}=g_{0}{ }^{\top} d_{j}, \forall j$

Proof.

$$
\begin{aligned}
& x_{j}=x_{0}+\sum_{i=0}^{j-1} \alpha_{i} d_{i} \\
& \Longrightarrow A x_{j}-b=A x_{0}-b+\sum_{i=0}^{j-1} \alpha_{i} A d_{i} \\
& \Longrightarrow g_{j}=g_{0}+\sum_{i=0}^{j-1} \alpha_{i} A d_{i} \\
& \Longrightarrow g_{j}^{\top} d_{j}=g_{0}^{\top} d_{j}+\sum_{i=0}^{j-1} \alpha_{i} d_{i}^{\top} A d_{j} \\
& \therefore g_{j}^{\top}=g_{0}^{\top} d_{j} \forall j
\end{aligned}
$$

$\therefore \alpha_{j} g_{0}{ }^{\top} d_{j}+\frac{1}{2} \alpha_{j}^{2} d_{j}^{\top} A d_{j} \leq \mu_{j} g_{0}{ }^{\top} d_{j}+\frac{1}{2} \mu_{j}^{2} d_{j}^{\top} A d_{j}$
Therefore, by summing over j we get,

$$
f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\alpha_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \alpha_{j}^{2} d_{j}^{\top} A d_{j}\right) \leq f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\mu_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \mu_{j}^{2} d_{j}^{\top} A d_{j}\right)
$$

Convergence of Conjugate Descent

Claim

$g_{j}{ }^{\top} d_{j}=g_{0}{ }^{\top} d_{j}, \forall j$

Proof.

$$
\begin{aligned}
& x_{j}=x_{0}+\sum_{i=0}^{j-1} \alpha_{i} d_{i} \\
& \Longrightarrow A x_{j}-b=A x_{0}-b+\sum_{i=0}^{j-1} \alpha_{i} A d_{i} \\
& \Longrightarrow g_{j}=g_{0}+\sum_{i=0}^{j-1} \alpha_{i} A d_{i} \\
& \Longrightarrow g_{j}^{\top} d_{j}=g_{0}^{\top} d_{j}+\sum_{i=0}^{j-1} \alpha_{i} d_{i}^{\top} A d_{j} \\
& \therefore g_{j}^{\top}=g_{0}^{\top} d_{j} \forall j
\end{aligned}
$$

$\therefore \alpha_{j} g_{0}{ }^{\top} d_{j}+\frac{1}{2} \alpha_{j}^{2} d_{j}^{\top} A d_{j} \leq \mu_{j} g_{0}{ }^{\top} d_{j}+\frac{1}{2} \mu_{j}^{2} d_{j}^{\top} A d_{j}$
Therefore, by summing over j we get,

$$
\begin{aligned}
& f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\alpha_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \alpha_{j}^{2} d_{j}^{\top} A d_{j}\right) \leq f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\mu_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \mu_{j}^{2} d_{j}^{\top} A d_{j}\right) \\
& \Longrightarrow f\left(x_{0}+\sum_{j=0}^{k-1} \alpha_{j} d_{j}\right) \leq f\left(x_{0}+\sum_{j=0}^{k-1} \mu_{j} d_{j}\right), \quad \mu_{j} \in \mathbb{R}
\end{aligned}
$$

Convergence of Conjugate Descent

Claim

$g_{j}{ }^{\top} d_{j}=g_{0}{ }^{\top} d_{j}, \forall j$

Proof.

$$
\begin{aligned}
& x_{j}=x_{0}+\sum_{i=0}^{j-1} \alpha_{i} d_{i} \\
& \Longrightarrow A x_{j}-b=A x_{0}-b+\sum_{i=0}^{j-1} \alpha_{i} A d_{i} \\
& \Longrightarrow g_{j}=g_{0}+\sum_{i=0}^{j-1} \alpha_{i} A d_{i} \\
& \Longrightarrow g_{j}^{\top} d_{j}=g_{0}^{\top} d_{j}+\sum_{i=0}^{j-1} \alpha_{i} d_{i}^{\top} A d_{j} \\
& \therefore g_{j}^{\top}=g_{0}^{\top} d_{j} \forall j
\end{aligned}
$$

$\therefore \alpha_{j} g_{0}{ }^{\top} d_{j}+\frac{1}{2} \alpha_{j}{ }^{2} d_{j}{ }^{\top} A d_{j} \leq \mu_{j} g_{0}{ }^{\top} d_{j}+\frac{1}{2} \mu_{j}{ }^{2} d_{j}{ }^{\top} A d_{j}$
Therefore, by summing over j we get,

$$
\begin{aligned}
& f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\alpha_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \alpha_{j}^{2} d_{j}^{\top} A d_{j}\right) \leq f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\mu_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \mu_{j}^{2} d_{j}^{\top} A d_{j}\right) \\
& \Longrightarrow f\left(x_{0}+\sum_{j=0}^{k-1} \alpha_{j} d_{j}\right) \leq f\left(x_{0}+\sum_{j=0}^{k-1} \mu_{j} d_{j}\right), \quad \mu_{j} \in \mathbb{R}
\end{aligned}
$$

$\therefore f\left(x_{k}\right) \leq f(x) \forall x \in x_{0}+\mathbb{B}_{k}$

Convergence of Conjugate Descent

Claim

$g_{j}^{\top} d_{j}=g_{0}^{\top} d_{j}, \forall j$

Proof.

$$
\begin{aligned}
& x_{j}=x_{0}+\sum_{i=0}^{j-1} \alpha_{i} d_{i} \\
& \Longrightarrow A x_{j}-b=A x_{0}-b+\sum_{i=0}^{j-1} \alpha_{i} A d_{i} \\
& \Longrightarrow g_{j}=g_{0}+\sum_{i=0}^{j-1} \alpha_{i} A d_{i} \\
& \Longrightarrow g_{j}^{\top} d_{j}=g_{0}^{\top} d_{j}+\sum_{i=0}^{j-1} \alpha_{i} d_{i}^{\top} A d_{j} \\
& \therefore g_{j}^{\top}=g_{0}^{\top} d_{j} \forall j
\end{aligned}
$$

$\therefore \alpha_{j} g_{0}{ }^{\top} d_{j}+\frac{1}{2} \alpha_{j}{ }^{2} d_{j}{ }^{\top} A d_{j} \leq \mu_{j} g_{0}{ }^{\top} d_{j}+\frac{1}{2} \mu_{j}{ }^{2} d_{j}{ }^{\top} A d_{j}$
Therefore, by summing over j we get,

$$
\begin{aligned}
& f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\alpha_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \alpha_{j}^{2} d_{j}^{\top} A d_{j}\right) \leq f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\mu_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \mu_{j}^{2} d_{j}^{\top} A d_{j}\right) \\
& \Longrightarrow f\left(x_{0}+\sum_{j=0}^{k-1} \alpha_{j} d_{j}\right) \leq f\left(x_{0}+\sum_{j=0}^{k-1} \mu_{j} d_{j}\right), \quad \mu_{j} \in \mathbb{R}
\end{aligned}
$$

$\therefore f\left(x_{k}\right) \leq f(x) \forall x \in x_{0}+\mathbb{B}_{k}$
So, at $n^{\text {th }}$ iteration, $f\left(x_{n}\right) \leq f(x) \forall x \in x_{0}+\mathcal{B}_{n}$.

Convergence of Conjugate Descent

Claim

$g_{j}^{\top} d_{j}=g_{0}^{\top} d_{j}, \forall j$

Proof.

$$
\begin{aligned}
& x_{j}=x_{0}+\sum_{i=0}^{j-1} \alpha_{i} d_{i} \\
& \Longrightarrow A x_{j}-b=A x_{0}-b+\sum_{i=0}^{j-1} \alpha_{i} A d_{i} \\
& \Longrightarrow g_{j}=g_{0}+\sum_{i=0}^{j-1} \alpha_{i} A d_{i} \\
& \Longrightarrow g_{j}^{\top} d_{j}=g_{0}^{\top} d_{j}+\sum_{i=0}^{j-1} \alpha_{i} d_{i}^{\top} A d_{j} \\
& \therefore g_{j}^{\top}=g_{0}^{\top} d_{j} \forall j
\end{aligned}
$$

$\therefore \alpha_{j} g_{0}{ }^{\top} d_{j}+\frac{1}{2} \alpha_{j}{ }^{2} d_{j}{ }^{\top} A d_{j} \leq \mu_{j} g_{0}{ }^{\top} d_{j}+\frac{1}{2} \mu_{j}{ }^{2} d_{j}{ }^{\top} A d_{j}$
Therefore, by summing over j we get,

$$
\begin{aligned}
& f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\alpha_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \alpha_{j}^{2} d_{j}^{\top} A d_{j}\right) \leq f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\mu_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \mu_{j}^{2} d_{j}^{\top} A d_{j}\right) \\
& \Longrightarrow f\left(x_{0}+\sum_{j=0}^{k-1} \alpha_{j} d_{j}\right) \leq f\left(x_{0}+\sum_{j=0}^{k-1} \mu_{j} d_{j}\right), \quad \mu_{j} \in \mathbb{R}
\end{aligned}
$$

$\therefore f\left(x_{k}\right) \leq f(x) \forall x \in x_{0}+\mathbb{B}_{k}$
So, at $n^{\text {th }}$ iteration, $f\left(x_{n}\right) \leq f(x) \forall x \in x_{0}+\mathcal{B}_{n}$. But, $x_{0}+\mathcal{B}_{n}=\mathbb{R}^{n}$.

Convergence of Conjugate Descent

Claim

$g_{j}^{\top} d_{j}=g_{0}^{\top} d_{j}, \forall j$

Proof.

$$
\begin{aligned}
& x_{j}=x_{0}+\sum_{i=0}^{j-1} \alpha_{i} d_{i} \\
& \Longrightarrow A x_{j}-b=A x_{0}-b+\sum_{i=0}^{j-1} \alpha_{i} A d_{i} \\
& \Longrightarrow g_{j}=g_{0}+\sum_{i=0}^{j-1} \alpha_{i} A d_{i} \\
& \Longrightarrow g_{j}^{\top} d_{j}=g_{0}^{\top} d_{j}+\sum_{i=0}^{j-1} \alpha_{i} d_{i}^{\top} A d_{j} \\
& \therefore g_{j}^{\top}=g_{0}^{\top} d_{j} \forall j
\end{aligned}
$$

$\therefore \alpha_{j} g_{0}{ }^{\top} d_{j}+\frac{1}{2} \alpha_{j}{ }^{2} d_{j}{ }^{\top} A d_{j} \leq \mu_{j} g_{0}{ }^{\top} d_{j}+\frac{1}{2} \mu_{j}{ }^{2} d_{j}{ }^{\top} A d_{j}$
Therefore, by summing over j we get,

$$
\begin{aligned}
& f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\alpha_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \alpha_{j}^{2} d_{j}^{\top} A d_{j}\right) \leq f\left(x_{0}\right)+\sum_{j=0}^{k-1}\left(\mu_{j} g_{0}^{\top} d_{j}+\frac{1}{2} \mu_{j}^{2} d_{j}^{\top} A d_{j}\right) \\
& \Longrightarrow f\left(x_{0}+\sum_{j=0}^{k-1} \alpha_{j} d_{j}\right) \leq f\left(x_{0}+\sum_{j=0}^{k-1} \mu_{j} d_{j}\right), \quad \mu_{j} \in \mathbb{R}
\end{aligned}
$$

$\therefore f\left(x_{k}\right) \leq f(x) \forall x \in x_{0}+\mathbb{B}_{k}$
So, at $n^{\text {th }}$ iteration, $f\left(x_{n}\right) \leq f(x) \forall x \in x_{0}+\mathcal{B}_{n}$. But, $x_{0}+\mathcal{B}_{n}=\mathbb{R}^{n}$.
Hence, $x_{n}=x^{*}$

Procedure to Obtain Conjugate Directions: Gram-Schmidt Procedure

Procedure to Obtain Conjugate Directions

Procedure to Obtain Conjugate Directions

We use Gram-Schmidt procedure to obtain conjugate directions d_{0}, \ldots, d_{n-1}.

Procedure to Obtain Conjugate Directions

We use Gram-Schmidt procedure to obtain conjugate directions d_{0}, \ldots, d_{n-1}. . To this end, we need to start with a linearly independent set.

Procedure to Obtain Conjugate Directions

We use Gram-Schmidt procedure to obtain conjugate directions d_{0}, \ldots, d_{n-1}. . To this end, we need to start with a linearly independent set.
Suppose $\left\{-g_{0}, \ldots,-g_{n-1}\right\}$ is a linearly independent set (We will show this shortly).

Procedure to Obtain Conjugate Directions

We use Gram-Schmidt procedure to obtain conjugate directions d_{0}, \ldots, d_{n-1}. . To this end, we need to start with a linearly independent set.
Suppose $\left\{-g_{0}, \ldots,-g_{n-1}\right\}$ is a linearly independent set (We will show this shortly).

- Let $d_{0}=-g_{0}$

Procedure to Obtain Conjugate Directions

We use Gram-Schmidt procedure to obtain conjugate directions d_{0}, \ldots, d_{n-1}. . To this end, we need to start with a linearly independent set.
Suppose $\left\{-g_{0}, \ldots,-g_{n-1}\right\}$ is a linearly independent set (We will show this shortly).

- Let $d_{0}=-g_{0}$
- $d_{k}=-g_{k}+\sum_{j=0}^{k-1} \beta_{j} d_{j}, \quad k=1, \ldots, n-1$

Procedure to Obtain Conjugate Directions

We use Gram-Schmidt procedure to obtain conjugate directions d_{0}, \ldots, d_{n-1}. . To this end, we need to start with a linearly independent set.
Suppose $\left\{-g_{0}, \ldots,-g_{n-1}\right\}$ is a linearly independent set (We will show this shortly).

- Let $d_{0}=-g_{0}$
- $d_{k}=-g_{k}+\sum_{j=0}^{k-1} \beta_{j} d_{j}, \quad k=1, \ldots, n-1$

But, we want d_{0}, \ldots, d_{n-1} to be $A-$ conjugate vectors.

Procedure to Obtain Conjugate Directions

We use Gram-Schmidt procedure to obtain conjugate directions d_{0}, \ldots, d_{n-1}. . To this end, we need to start with a linearly independent set.
Suppose $\left\{-g_{0}, \ldots,-g_{n-1}\right\}$ is a linearly independent set (We will show this shortly).

- Let $d_{0}=-g_{0}$
- $d_{k}=-g_{k}+\sum_{j=0}^{k-1} \beta_{j} d_{j}, \quad k=1, \ldots, n-1$

But, we want d_{0}, \ldots, d_{n-1} to be $A-$ conjugate vectors. Therefore,

$$
\begin{aligned}
d_{i}^{\top} A d_{k} & =-d_{i}^{\top} A g_{k}+\sum_{j=0}^{k-1} \beta_{i} d_{i}^{\top} A d_{j}, \quad i=0, \ldots, k-1 \\
\therefore 0 & =-d_{i}^{\top} A g_{k}+\beta_{i} d_{i}^{\top} A d_{i}, \quad i=0, \ldots, k-1
\end{aligned}
$$

Procedure to Obtain Conjugate Directions

We use Gram-Schmidt procedure to obtain conjugate directions d_{0}, \ldots, d_{n-1}. . To this end, we need to start with a linearly independent set.
Suppose $\left\{-g_{0}, \ldots,-g_{n-1}\right\}$ is a linearly independent set (We will show this shortly).

- Let $d_{0}=-g_{0}$
- $d_{k}=-g_{k}+\sum_{j=0}^{k-1} \beta_{j} d_{j}, \quad k=1, \ldots, n-1$

But, we want d_{0}, \ldots, d_{n-1} to be $A-$ conjugate vectors. Therefore,

$$
\begin{gathered}
d_{i}^{\top} A d_{k}=-d_{i}^{\top} A g_{k}+\sum_{j=0}^{k-1} \beta_{i} d_{i}^{\top} A d_{j}, \quad i=0, \ldots, k-1 \\
\therefore 0=-d_{i}^{\top} A g_{k}+\beta_{i} d_{i}^{\top} A d_{i}, \quad i=0, \ldots, k-1 \\
\Longrightarrow \beta_{i}=\frac{g_{k}^{\top} A d_{i}}{d_{i}^{\top} A d_{i}}, \therefore d_{k}=-g_{k}+\sum_{j=0}^{k-1}\left(\frac{g_{k}^{\top} A d_{j}}{d_{j}^{\top} A d_{j}}\right) d_{j}
\end{gathered}
$$

Procedure to Obtain Conjugate Directions

Procedure to Obtain Conjugate Directions

Now, we show that $\left\{-g_{0}, \ldots,-g_{n-1}\right\}$ is a linearly independent set.

Procedure to Obtain Conjugate Directions

Now, we show that $\left\{-g_{0}, \ldots,-g_{n-1}\right\}$ is a linearly independent set. Note that $\operatorname{span}\left\{d_{0}, \ldots, d_{k-1}\right\}=\operatorname{span}\left\{-g_{0}, \ldots,-g_{k-1}\right\}$.

Procedure to Obtain Conjugate Directions

Now, we show that $\left\{-g_{0}, \ldots,-g_{n-1}\right\}$ is a linearly independent set. Note that $\operatorname{span}\left\{d_{0}, \ldots, d_{k-1}\right\}=\operatorname{span}\left\{-g_{0}, \ldots,-g_{k-1}\right\}$. We already established that $g_{k} \perp \mathcal{B}_{k}$.

Procedure to Obtain Conjugate Directions

Now, we show that $\left\{-g_{0}, \ldots,-g_{n-1}\right\}$ is a linearly independent set. Note that $\operatorname{span}\left\{d_{0}, \ldots, d_{k-1}\right\}=\operatorname{span}\left\{-g_{0}, \ldots,-g_{k-1}\right\}$.
We already established that $g_{k} \perp \mathcal{B}_{k}$.
$\Longrightarrow-g_{k} \perp \operatorname{span}\left\{d_{0}, \ldots, d_{k-1}\right\}$.

Procedure to Obtain Conjugate Directions

Now, we show that $\left\{-g_{0}, \ldots,-g_{n-1}\right\}$ is a linearly independent set.
Note that $\operatorname{span}\left\{d_{0}, \ldots, d_{k-1}\right\}=\operatorname{span}\left\{-g_{0}, \ldots,-g_{k-1}\right\}$.
We already established that $g_{k} \perp \mathcal{B}_{k}$.
$\Longrightarrow-g_{k} \perp \operatorname{span}\left\{d_{0}, \ldots, d_{k-1}\right\}$.
$\therefore-g_{k} \perp \operatorname{span}\left\{-g_{0}, \ldots,-g_{k-1}\right\}$

Procedure to Obtain Conjugate Directions

Now, we show that $\left\{-g_{0}, \ldots,-g_{n-1}\right\}$ is a linearly independent set.
Note that $\operatorname{span}\left\{d_{0}, \ldots, d_{k-1}\right\}=\operatorname{span}\left\{-g_{0}, \ldots,-g_{k-1}\right\}$.
We already established that $g_{k} \perp \mathcal{B}_{k}$.
$\Longrightarrow-g_{k} \perp \operatorname{span}\left\{d_{0}, \ldots, d_{k-1}\right\}$.
$\therefore-g_{k} \perp \operatorname{span}\left\{-g_{0}, \ldots,-g_{k-1}\right\}$
$\therefore\left\{-g_{0}, \ldots,-g_{n-1}\right\}$ is a linearly independent set.

Procedure to Obtain Conjugate Directions

Procedure to Obtain Conjugate Directions

Thus, we have

$$
\begin{aligned}
& d_{0}=-g_{0} \\
& d_{k}=-g_{k}+\sum_{j=0}^{k-1}\left(\frac{g_{k}^{\top} A d_{j}}{d_{j}^{\top} A d_{j}}\right) d_{j} \quad \forall k=1, \ldots, n-1
\end{aligned}
$$

Procedure to Obtain Conjugate Directions

Thus, we have

$$
\begin{aligned}
& d_{0}=-g_{0} \\
& d_{k}=-g_{k}+\sum_{j=0}^{k-1}\left(\frac{g_{k}^{\top} A d_{j}}{d_{j}^{\top} A d_{j}}\right) d_{j} \quad \forall k=1, \ldots, n-1
\end{aligned}
$$

But, the update still depends on A and we need to get rid of that.

Procedure to Obtain Conjugate Directions

Thus, we have

$$
\begin{aligned}
& d_{0}=-g_{0} \\
& d_{k}=-g_{k}+\sum_{j=0}^{k-1}\left(\frac{g_{k}^{\top} A d_{j}}{d_{j}^{\top} A d_{j}}\right) d_{j} \quad \forall k=1, \ldots, n-1
\end{aligned}
$$

But, the update still depends on A and we need to get rid of that. To this end, note that $x_{j+1}=x_{j}+\alpha_{j} d_{j} \Longrightarrow g_{j+1}=g_{j}+\alpha_{j} A d_{j}$.

Procedure to Obtain Conjugate Directions

Thus, we have

$$
\begin{aligned}
& d_{0}=-g_{0} \\
& d_{k}=-g_{k}+\sum_{j=0}^{k-1}\left(\frac{g_{k}^{\top} A d_{j}}{d_{j}^{\top} A d_{j}}\right) d_{j} \quad \forall k=1, \ldots, n-1
\end{aligned}
$$

But, the update still depends on A and we need to get rid of that. To this end, note that $x_{j+1}=x_{j}+\alpha_{j} d_{j} \Longrightarrow g_{j+1}=g_{j}+\alpha_{j} A d_{j}$.
Therefore,

$$
A d_{j}=\frac{1}{\alpha_{j}}\left(g_{j+1}-g_{j}\right)
$$

Procedure to Obtain Conjugate Directions

Thus, we have

$$
\begin{aligned}
& d_{0}=-g_{0} \\
& d_{k}=-g_{k}+\sum_{j=0}^{k-1}\left(\frac{g_{k}^{\top} A d_{j}}{d_{j}^{\top} A d_{j}}\right) d_{j} \quad \forall k=1, \ldots, n-1
\end{aligned}
$$

But, the update still depends on A and we need to get rid of that. To this end, note that $x_{j+1}=x_{j}+\alpha_{j} d_{j} \Longrightarrow g_{j+1}=g_{j}+\alpha_{j} A d_{j}$.
Therefore,

$$
A d_{j}=\frac{1}{\alpha_{j}}\left(g_{j+1}-g_{j}\right)
$$

Hence,

$$
d_{k}=-g_{k}+\sum_{j=0}^{k-1}\left(\frac{g_{k}^{\top}\left(g_{j+1}-g_{j}\right)}{d_{j}^{\top}\left(g_{j+1}-g_{j}\right)}\right) d_{j}
$$

Procedure to Obtain Conjugate Directions

Thus, we have

$$
\begin{aligned}
& d_{0}=-g_{0} \\
& d_{k}=-g_{k}+\sum_{j=0}^{k-1}\left(\frac{g_{k}^{\top} A d_{j}}{d_{j}^{\top} A d_{j}}\right) d_{j} \quad \forall k=1, \ldots, n-1
\end{aligned}
$$

But, the update still depends on A and we need to get rid of that. To this end, note that $x_{j+1}=x_{j}+\alpha_{j} d_{j} \Longrightarrow g_{j+1}=g_{j}+\alpha_{j} A d_{j}$.
Therefore,

$$
A d_{j}=\frac{1}{\alpha_{j}}\left(g_{j+1}-g_{j}\right)
$$

Hence,

$$
\begin{aligned}
d_{k} & =-g_{k}+\sum_{j=0}^{k-1}\left(\frac{g_{k}^{\top}\left(g_{j+1}-g_{j}\right)}{d_{j}^{\top}\left(g_{j+1}-g_{j}\right)}\right) d_{j} \\
d_{k} & =-g_{k}+\left(\frac{g_{k}^{\top} g_{k}}{d_{k-1}^{\top}\left(g_{k}-g_{k-1}\right)}\right) d_{k-1}
\end{aligned}
$$

Procedure to Obtain Conjugate Directions

Procedure to Obtain Conjugate Directions

Due to exact line search, $g_{k}{ }^{\top} d_{k-1}=0$.

Procedure to Obtain Conjugate Directions

Due to exact line search, $g_{k}{ }^{\top} d_{k-1}=0$. Note that,

$$
d_{k-1}=-g_{k-1}+\beta_{k-2} d_{k-2}
$$

Procedure to Obtain Conjugate Directions

Due to exact line search, $g_{k}{ }^{\top} d_{k-1}=0$. Note that,

$$
d_{k-1}=-g_{k-1}+\beta_{k-2} d_{k-2}
$$

\Longrightarrow

$$
-d_{k-1}{ }^{\top} g_{k-1}=g_{k-1}{ }^{\top} g_{k-1}+\beta_{k-2} g_{k-1}{ }^{\top} d_{k-2}
$$

Procedure to Obtain Conjugate Directions

Due to exact line search, $g_{k}{ }^{\top} d_{k-1}=0$. Note that,

$$
d_{k-1}=-g_{k-1}+\beta_{k-2} d_{k-2}
$$

\Longrightarrow

$$
-d_{k-1}^{\top} g_{k-1}=g_{k-1}{ }^{\top} g_{k-1}+\beta_{k-2} g_{k-1}^{\top} d_{k-2}
$$

Therefore,

$$
d_{k}=-g_{k}+\left(\frac{g_{k}^{\top} g_{k}}{g_{k-1}^{\top} g_{k-1}}\right) d_{k-1}, \quad k=1, \ldots, n-1
$$

The above update is called Fletcher-Reeves update

Conclusion

Conclusion

Conclusion

- Solution to convex quadratic problem \Longleftrightarrow solution to system of linear equations

Conclusion

- Solution to convex quadratic problem \Longleftrightarrow solution to system of linear equations
- The curse of inverse computation can be avoided if the Hessian matrix is positive definite

Conclusion

- Solution to convex quadratic problem \Longleftrightarrow solution to system of linear equations
- The curse of inverse computation can be avoided if the Hessian matrix is positive definite
- Conjugate gradient (descent) method finds the optimal solution in at most n iterations

References

[1] David G Luenberger, Yinyu Ye, et al. Linear and nonlinear programming. Vol. 2. Springer, 1984.
[2] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. 2e. New York, NY, USA: Springer, 2006.

