A Unified Approach to Differentially Private Bayes Point Estimation

Braghadeesh Lakshminarayanan and Cristian R. Rojas

Division of Decision and Control Systems KTH Royal Institute of Technology Stockholm, Sweden

22nd IFAC WC, Yokohama
July 13, 2023

Motivation and Background

I. Point Estimate

Point Estimate

Point Estimate

Point Estimate

Point Estimate

- Goal: Estimate unknown θ by observing $X=\left(X_{1}, \ldots, X_{N}\right)$

Point Estimate

- Goal: Estimate unknown θ by observing $X=\left(X_{1}, \ldots, X_{N}\right)$
- Point estimate: $\hat{\theta}:=\hat{\theta}(X)$ Single quantity that is a possible value of θ

Point Estimate

- Goal: Estimate unknown θ by observing $X=\left(X_{1}, \ldots, X_{N}\right)$
- Point estimate: $\hat{\theta}:=\hat{\theta}(X)$ Single quantity that is a possible value of θ
- Examples:
- $\operatorname{Ber}(\theta): \hat{\theta}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$
- $\mathcal{N}\left(\mu, \sigma^{2}\right): \widehat{\sigma^{2}}=\frac{1}{N-1} \sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}$

Need for Privacy in Point Estimates

- Aggregate statistics: Sample mean, sample covariance,...
- Possible to infer an individual ${ }^{1}$

[^0]
II. Differential Privacy

Differential Privacy (DP)

DP definition ${ }^{2}: \operatorname{Pr}[\mathcal{A}(\boldsymbol{x}) \in T] \leq e^{\varepsilon} \operatorname{Pr}\left[\mathcal{A}\left(\mathbf{x}^{\prime}\right) \in T\right]$

${ }^{2}$ C. Dwork and A. Roth. "The Algorithmic Foundations of Differential Privacy". Foundations and Trends in Theoretical Computer Science. 2014

Differential Privacy (DP)

DP definition: $\operatorname{Pr}[\mathscr{A}(\boldsymbol{x}) \in T] \leq e^{\varepsilon} \operatorname{Pr}\left[\mathscr{A}\left(\boldsymbol{x}^{\prime}\right) \in T\right]$

How to design \mathcal{A} ?

The Laplace Mechanism

Deterministic function

The Laplace Mechanism

Laplace noise

The Laplace Mechanism

$$
\eta_{i} \sim \operatorname{Lap}\left(0, \frac{\sigma_{g}}{\varepsilon}\right)
$$

The Laplace Mechanism

$\eta_{i} \sim \operatorname{Lap}\left(0, \frac{\sigma_{\theta}}{\varepsilon}\right)^{=?}$

The Laplace Mechanism

$\eta_{i} \sim \operatorname{Lap}\left(0, \frac{\sigma_{g}}{\varepsilon}\right)$

$$
\sigma_{g}=\sup _{\mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X}: d\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=1}\left\|g(\mathbf{x})-g\left(\mathbf{x}^{\prime}\right)\right\|_{1} l_{1} \text { sensitivity }
$$

The Laplace Mechanism

- Laplace mechanism enforces DP 3
- DP via Laplace mechanism encounters accuracy-privacy trade off

[^1]
Bayes Point Estimate + Differential Privacy

Outline

Unified Approach (UBaPP Estimator)

UBaPP Estimator for Finite Case

Numerical Example

Conclusion

Outline

Unified Approach (UBaPP Estimator)

UBaPP Estimator for Finite Case

Numerical Example

Conclusion

Unified Approach (UBaPP Estimator)

Earlier,

Unified Approach (UBaPP Estimator)

Earlier,

Instead, we propose

Unified Approach (UBaPP Estimator)

Earlier,

Instead, we propose

Randomized estimator (our approach)

DP is enforced by randomizing the estimator directly

Unified Approach (UBaPP Estimator)

Non-private Bayes risk minimization:
Minimize risk

$$
R(\delta, \pi)=\int_{\theta \in \Theta} \int_{\mathbf{y} \in \mathcal{Y}} L(\theta, \delta) q_{\theta}(\mathbf{y}) \pi(\theta) d \theta d \mathbf{y}
$$

Unified Approach (UBaPP Estimator)

Non-private Bayes risk minimization:
Minimize risk

$$
R(\delta, \pi)=\int_{\theta \in \Theta} \int_{\mathbf{y} \in \mathcal{Y}} L(\theta, \delta) q_{\theta}(\mathbf{y}) \pi(\theta) d \theta d \mathbf{y}
$$

Solution: Deterministic estimate!

Unified Approach (UBaPP Estimator)

Private-Bayes risk minimization:
Minimize randomized risk

$$
R\left(\delta_{p, \varepsilon}, \pi\right)=\int_{\theta \in \Theta} \int_{\mathbf{y} \in \mathcal{Y}} \int_{\tilde{\theta} \in \Theta} L(\theta, \tilde{\theta}) q_{\theta}(\mathbf{y}) \pi(\theta) d \theta d \mathbf{y} \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) d \tilde{\theta}
$$

Solution: Randomized estimate

Unified Approach (UBaPP Estimator)

Private-Bayes risk minimization:
Minimize randomized risk

$$
R\left(\delta_{p, \varepsilon}, \pi\right)=\int_{\theta \in \Theta} \int_{\mathbf{y} \in \mathcal{Y}} \int_{\tilde{\theta} \in \Theta} L(\theta, \tilde{\theta}) q_{\theta}(\mathbf{y}) \pi(\theta) d \theta d \mathbf{y} \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) d \tilde{\theta}
$$

subject to

$$
\delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) \leq e^{\varepsilon} \delta_{p, \varepsilon}\left(\tilde{\theta} \mid \mathbf{y}^{\prime}\right), \text { for each } \tilde{\theta} \in \Theta \quad \text { DP constraint }
$$

Unified Approach (UBaPP Estimator)

Solution: UBaPP estimate
Private-Bayes risk minimization:
Minimize randomized risk

$$
R\left(\delta_{p, \varepsilon}, \pi\right)=\int_{\theta \in \Theta} \int_{\mathbf{y} \in \mathcal{Y}} \int_{\tilde{\theta} \in \Theta} L(\theta, \tilde{\theta}) q_{\theta}(\mathbf{y}) \pi(\theta) d \theta d \mathbf{y} \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) d \tilde{\theta}
$$

subject to

$$
\delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) \leq e^{\varepsilon} \delta_{p, \varepsilon}\left(\tilde{\theta} \mid \mathbf{y}^{\prime}\right), \text { for each } \tilde{\theta} \in \Theta \quad \text { DP constraint }
$$

Unified Approach (UBaPP Estimator)

UBaPP estimator is the solution to following convex program:

$$
\begin{aligned}
\min _{\delta_{p, \varepsilon} \in \mathcal{P}(\mathcal{Y}, \Theta)} & \int_{\Theta} \int_{\mathcal{Y}} \int_{\Theta} L(\theta, \tilde{\theta}) \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) q_{\theta}(\mathbf{y}) \pi(\theta) d \theta d \mathbf{y} d \tilde{\theta} \\
\text { s.t. } \quad & \delta_{p, \varepsilon}(\tilde{\theta} \mid S(\mathbf{x})) \leq e^{\varepsilon} \delta_{p, \varepsilon}\left(\tilde{\theta} \mid S\left(\mathbf{x}^{\prime}\right)\right), \text { for each } \tilde{\theta} \in \Theta \\
& \text { and } \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X} \text { s.t. } d\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=1 \\
& \int_{\Theta} \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) d \mathbf{y}=1, \text { for each } \mathbf{y} \in \mathcal{Y} \\
& \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) \geq 0, \text { for each } \mathbf{y} \in \mathcal{Y}, \tilde{\theta} \in \Theta
\end{aligned}
$$

Unified Approach (UBaPP Estimator)

UBaPP estimator is the solution to following convex program:

$$
\begin{aligned}
& \min _{\delta_{p, \varepsilon} \in \mathcal{P}(\mathcal{Y}, \Theta)} \int_{\Theta} \int_{\mathcal{Y}} \int_{\Theta} L(\theta, \tilde{\theta}) \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) q_{\theta}(\mathbf{y}) \pi(\theta) d \theta d \mathbf{y} d \tilde{\theta} \\
& \text { s.t. } \delta_{p, \varepsilon}(\tilde{\theta} \mid S(\mathbf{x})) \leq e^{\varepsilon} \delta_{p, \varepsilon}\left(\tilde{\theta} \mid S\left(\mathbf{x}^{\prime}\right)\right), \text { for each } \tilde{\theta} \in \Theta \\
& \text { and } \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X} \text { s.t. } d\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=1 \\
& \int_{\Theta} \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) d \mathbf{y}=1, \text { for each } \mathbf{y} \in \mathcal{Y} \\
& \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) \geq 0, \text { for each } \mathbf{y} \in \mathcal{Y}, \tilde{\theta} \in \Theta
\end{aligned}
$$

Unified Approach (UBaPP Estimator)

UBaPP estimator is the solution to following convex program:

$$
\begin{aligned}
& \min _{\delta_{p, \varepsilon} \in \mathcal{P}(\mathcal{Y}, \Theta)} \int_{\Theta} \int_{\mathcal{Y}} \int_{\Theta} L(\theta, \tilde{\theta}) \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) q_{\theta}(\mathbf{y}) \pi(\theta) d \theta d \mathbf{y} d \tilde{\theta} \\
& \text { s.t. } \begin{array}{l}
\delta_{p, \varepsilon}(\tilde{\theta} \mid S(\mathbf{x})) \leq e^{\varepsilon} \delta_{p, \varepsilon}\left(\tilde{\theta} \mid S\left(\mathbf{x}^{\prime}\right)\right), \text { for each } \tilde{\theta} \in \Theta \\
\text { DP constraint } \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X} \text { s.t. } d\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=1
\end{array} \\
& \int_{\Theta} \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) d \mathbf{y}=1, \text { for each } \mathbf{y} \in \mathcal{Y} \\
& \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) \geq 0, \text { for each } \mathbf{y} \in \mathcal{Y}, \tilde{\theta} \in \Theta
\end{aligned}
$$

Unified Approach (UBaPP Estimator)

UBaPP estimator is the solution to following convex program:

$$
\begin{aligned}
\min _{\delta_{p, \varepsilon} \in \mathcal{P}(\mathcal{Y}, \Theta)} & \int_{\Theta} \int_{\mathcal{Y}} \int_{\Theta} L(\theta, \tilde{\theta}) \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) q_{\theta}(\mathbf{y}) \pi(\theta) d \theta d \mathbf{y} d \tilde{\theta} \\
\text { s.t. } & \delta_{p, \varepsilon}(\tilde{\theta} \mid S(\mathbf{x})) \leq e^{\varepsilon} \delta_{p, \varepsilon}\left(\tilde{\theta} \mid S\left(\mathbf{x}^{\prime}\right)\right), \text { for each } \tilde{\theta} \in \Theta \\
& \text { and } \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X} \text { s.t. } d\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=1 \\
& \int_{\Theta} \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) d \mathbf{y}=1, \text { for each } \mathbf{y} \in \mathcal{Y} \\
& \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) \geq 0, \text { for each } \mathbf{y} \in \mathcal{Y}, \tilde{\theta} \in \Theta
\end{aligned}
$$

Randomization constraint

Unified Approach (UBaPP Estimator)

UBaPP estimator is the solution to following convex program:

$$
\begin{aligned}
\min _{\delta_{p, \varepsilon} \in \mathcal{P}(\mathcal{Y}, \Theta)} & \int_{\Theta} \int_{\mathcal{Y}} \int_{\Theta} L(\theta, \tilde{\theta}) \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) q_{\theta}(\mathbf{y}) \pi(\theta) d \theta d \mathbf{y} d \tilde{\theta} \\
\text { s.t. } \quad & \delta_{p, \varepsilon}(\tilde{\theta} \mid S(\mathbf{x})) \leq e^{\varepsilon} \delta_{p, \varepsilon}\left(\tilde{\theta} \mid S\left(\mathbf{x}^{\prime}\right)\right), \text { for each } \tilde{\theta} \in \Theta \\
& \text { and } \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X} \text { s.t. } d\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=1 \\
& \int_{\Theta} \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) d \mathbf{y}=1, \text { for each } \mathbf{y} \in \mathcal{Y} \\
& \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) \geq 0, \text { for each } \mathbf{y} \in \mathcal{Y}, \tilde{\theta} \in \Theta
\end{aligned}
$$

UBaPP is optimal by construction!

Unified Approach (UBaPP Estimator)

UBaPP estimator is the solution to following convex program:

$$
\begin{aligned}
\min _{\delta_{p, \varepsilon} \in \mathcal{P}(\mathcal{Y}, \Theta)} & \int_{\Theta} \int_{\mathcal{Y}} \int_{\Theta}\|\theta-\tilde{\theta}\|^{2} \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) q_{\theta}(\mathbf{y}) \pi(\theta) d \theta d \mathbf{y} d \tilde{\theta} \\
\text { s.t. } & \delta_{p, \varepsilon}(\tilde{\theta} \mid S(\mathbf{x})) \leq e^{\varepsilon} \delta_{p, \varepsilon}\left(\tilde{\theta} \mid S\left(\mathbf{x}^{\prime}\right)\right), \text { for each } \tilde{\theta} \in \Theta \\
& \text { and } \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X} \text { s.t. } d\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=1 \\
& \int_{\Theta} \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) d \mathbf{y}=1, \text { for each } \mathbf{y} \in \mathcal{Y} \\
& \delta_{p, \varepsilon}(\tilde{\theta} \mid \mathbf{y}) \geq 0, \text { for each } \mathbf{y} \in \mathcal{Y}, \tilde{\theta} \in \Theta
\end{aligned}
$$

UBaPP is optimal by construction!

Outline

Unified Approach (UBaPP Estimator)

UBaPP Estimator for Finite Case

Numerical Example

Conclusion

UBaPP Estimator for Finite Case

UBaPP estimator \equiv solution to a linear program:

$$
\begin{array}{cl}
\min _{\mathbf{P} \in \mathbb{R}^{\Theta|\times|\mathcal{Y}|}} & \operatorname{tr}(\mathbf{Q} \operatorname{diag}(\boldsymbol{\pi}) \mathbf{L} \mathbf{P}) \\
\text { s.t. } & \mathbf{P}_{k, i} \leq e^{\varepsilon} \mathbf{P}_{k, i^{\prime}}, \text { for all } k \in\{1, \ldots,|\Theta|\} \\
& \text { and } i, i^{\prime} \in\{1, \ldots,|\mathcal{Y}|\} \text { s.t. } d\left(\mathbf{x}_{i}, \mathbf{x}_{i^{\prime}}\right)=1 \\
& \mathbf{1}^{\top} \mathbf{P}=\mathbf{1}^{\top} \\
& \mathbf{P} \geq 0
\end{array}
$$

UBaPP Estimator for Finite Case

UBaPP estimator \equiv solution to a linear program:

$$
\begin{array}{cl}
\min _{\mathbf{P} \in \mathbb{R}^{|\Theta| \times|\mathcal{Y}|}} & \operatorname{tr}(\mathbf{Q} \operatorname{diag}(\boldsymbol{\pi}) \mathbf{L P}) \\
\text { s.t. } & \mathbf{P}_{k, i} \leq e^{\varepsilon} \mathbf{P}_{k, i^{\prime}}, \text { for all } k \in\{1, \ldots,|\Theta|\} \\
& \text { and } i, i^{\prime} \in\{1, \ldots,|\mathcal{Y}|\} \text { s.t. } d\left(\mathbf{x}_{i}, \mathbf{x}_{i^{\prime}}\right)=1 \\
& \mathbf{1}^{\top} \mathbf{P}=\mathbf{1}^{\top} \\
& \mathbf{P} \geq 0
\end{array}
$$

Solved using CVXPY!

Outline

Unified Approach (UBaPP Estimator)

UBaPP Estimator for Finite Case

Numerical Example

Conclusion

Numerical Example

Private estimation of Bernoulli parameter (θ) using K trials

- $\Theta=[0,1]$

Numerical Example

Private estimation of Bernoulli parameter (θ) using K trials
$\rightarrow \Theta=[0,1] \stackrel{\text { discretize }}{\Longrightarrow} \theta_{j} \stackrel{\text { i.i.d. }}{\sim} \pi, j \in\{1, \ldots, M\}$

Numerical Example

Private estimation of Bernoulli parameter (θ) using K trials
$\rightarrow \Theta=[0,1] \stackrel{\text { discretize }}{\Longrightarrow} \theta_{j} \stackrel{\text { i.i.d. }}{\sim} \pi, j \in\{1, \ldots, M\}$

- $\mathcal{Y}=\{0, \ldots, K\}$

Numerical Example

Private estimation of Bernoulli parameter (θ) using K trials
$\triangleright \Theta=[0,1] \stackrel{\text { discretize }}{\Longrightarrow} \theta_{j} \stackrel{\text { i.i.d. }}{\sim} \pi, j \in\{1, \ldots, M\}$

- $\mathcal{Y}=\{0, \ldots, K\}$
- $S(\mathbf{x})=\sum_{i=1}^{K} x_{i} \quad x_{i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Ber}\left(\theta_{j}\right), i=1, \ldots, K$

Numerical Example

Private estimation of Bernoulli parameter (θ) using K trials

- $\Theta=[0,1] \stackrel{\text { discretize }}{\Longrightarrow} \theta_{j} \stackrel{\text { i.i.d. }}{\sim} \pi, j \in\{1, \ldots, M\}$
- $\mathcal{Y}=\{0, \ldots, K\}$
- $S(\boldsymbol{x})=\sum_{i=1}^{K} x_{i} \quad x_{i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Ber}\left(\theta_{j}\right), i=1, \ldots, K$

Laplace Bayes Private Point (LBaPP) estimator for this setup:

$$
\delta_{l p b, \varepsilon}=\frac{1}{K+2}\left(\sum_{i=1}^{K} x_{i}+1\right)+\operatorname{Lap}\left(0, \frac{1}{(K+2) \varepsilon}\right)
$$

Numerical Example

Private estimation of Bernoulli parameter (θ) using K trials

- $\Theta=[0,1] \stackrel{\text { discretize }}{\Longrightarrow} \theta_{j} \stackrel{\text { i.i.d. }}{\sim} \pi, j \in\{1, \ldots, M\}$
- $\mathcal{Y}=\{0, \ldots, K\}$
- $S(\boldsymbol{x})=\sum_{i=1}^{K} x_{i} \quad x_{i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Ber}\left(\theta_{j}\right), i=1, \ldots, K$

Laplace Bayes Private Point (LBaPP) estimator for this setup:

$$
\delta_{l p b, \varepsilon}=\underbrace{\frac{1}{K+2}\left(\sum_{i=1}^{K} x_{i}+1\right)}_{\text {non-private estimate }}+\operatorname{Lap}\left(0, \frac{1}{(K+2) \varepsilon}\right)
$$

Numerical Example

Private estimation of Bernoulli parameter (θ) using K trials

- $\Theta=[0,1] \stackrel{\text { discretize }}{\Longrightarrow} \theta_{j} \stackrel{\text { i.i.d. }}{\sim} \pi, j \in\{1, \ldots, M\}$
- $\mathcal{Y}=\{0, \ldots, K\}$
- $S(\mathbf{x})=\sum_{i=1}^{K} x_{i} \quad x_{i} \stackrel{i . i . d .}{\sim} \operatorname{Ber}\left(\theta_{j}\right), i=1, \ldots, K$

Laplace Bayes Private Point (LBaPP) estimator for this setup:

$$
\delta_{l p b, \varepsilon}=\underbrace{\frac{1}{K+2}\left(\sum_{i=1}^{K} x_{i}+1\right)}_{\text {non-private estimate }}+\underbrace{\operatorname{Lap}\left(0, \frac{1}{(K+2) \varepsilon}\right)}_{\text {Laplace noise }}
$$

Plots (MSE v.s. ε)

For a fixed $K(K=100)$
High privacy regime

High accuracy is achieved by our approach!

Plots (MSE v.s. ε)

For a fixed $K(K=100)$
Low privacy regime

Comparable performance!

Heat Maps

- $\varepsilon=10^{-4}$: Deterministic estimate, independent of \boldsymbol{y}, no inference about \boldsymbol{x}
- $\varepsilon=10^{-1}$: Randomized estimate, still independent of \boldsymbol{y}, still no inference about x
- $\varepsilon=5$: Deterministic estimate, strongly dependent on \mathbf{y}, complete inference about \boldsymbol{x}

Outline

Unified Approach (UBaPP Estimator)

UBaPP Estimator for Finite Case

Numerical Example

Conclusion

Conclusion

- Provided a unified approach to yield Bayes point estimate subject to differential privacy
- The "noise" is implicitly "added" by randomizing the estimator directly
- Demonstrated promising result in the limiting case (high-privacy regime) for the finite case via a numerical example
- Future work: Analyze the UBaPP estimator for high dimensional parameter and observation space

Thank You

Plots (MSE v.s. K)

High privacy regime $\left(\varepsilon=10^{-3}\right)$

High gain in sample complexity!

Plots (MSE v.s. K)

Low privacy regime ($\varepsilon=5$)

Comparable sample complexity!

[^0]: ${ }^{1}$ Homer, N. et al. "Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays". PLOS Genetics, 2008.

[^1]: ${ }^{3}$ C. Dwork and A. Roth. "The Algorithmic Foundations of Differential Privacy". Foundations and Trends in Theoretical Computer Science. 2014

