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Motivation



Motivation

• Consider finding the expectation of a function of a random
variable

µ = E [f(X)] =
∫
x∈X

f(x)p(x)dx

• Why are we interested in calculating expectation?

• Many quantities of interest may be cast as expectation
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Motivation

• Probabilities:

P (Y ∈ A) = E
[
I{A}(Y)

]
where I{A}(Y) =

{
1, if Y ∈ A
0, if Y /∈ A

• Integrals: ∫ b

a
q(x)dx

The above integral can be computed as∫ b

a
q(x)dx = (b− a)

∫ b

a
q(x) 1

b− adx

= (b− a)
∫ b

a
q(x)PU(x)dx

= (b− a)E [q(U)]
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Motivation

• Issue in computing expectation:
• The explicit computation is often cumbersome

• The integrand may have complicated expressions!

• Remedy?

• We can compute the expectation by simple Monte-Carlo sampling
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MC Sampling



Monte-Carlo Sampling

• Draw N samples (i.i.d) from the distribution P

X1, . . . , XN
i.i.d∼ P

• Compute the sample mean

µ̂ =
1
N

N∑
i=1

f(Xi)

• Law of large numbers guarantees that as long as N is “large”
enough,

µ̂
a.s→ E [f(X)]
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Monte-Carlo Sampling

• µ̂ is unbiased

• Var(µ̂) = σ2

N , where

σ2 =

∫
x∈X

f 2(x)p(x)dx− µ2

• Does Monte-Carlo sampling always yield “good” approximation?
Not really!
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Pitfall of Monte-Carlo Sampling

• Consider estimating the following tail probability
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Pitfall of Monte-Carlo Sampling

• Monte-Carlo sampling may fail to sample points from the tail

• Sample mean estimate for the tail probability may have huge
variance

• Leads to inaccurate approximation

• Remedy?
Importance Sampling!
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Importance Sampling

• Key idea: Sample from a different distribution q that has “heavy”
tail over our region of interest

-4-4 -2-2 22 44 66 8800

p(x) q(x)

 

EE

• p - true distribution, q - proposal distribution
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Importance Sampling

• Recall: Original problem of finding expectation

µ = E [f(X)] =
∫
x∈X

f(x)p(x)dx

• We can rewrite the above expression in terms of our proposal
distribution q

µ =

∫
x∈X

f(x)p(x)
q(x) q(x)dx = Eq

[
f(X)p(X)
q(X)

]
X i.i.d∼ q
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Requirements for Proposal Distribution

• q(x) > 0 whenever f(x)p(x) ̸= 0
• q(x) > 0 whenever p(x) > 0

• Supp(p) = {x ∈ X : p(x) > 0}

• Let D denote the support of p and Q denote the support of q
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Importance Sampling Estimate

• IS estimate: µ̂q =
1
N

N∑
i=1

f(Xi)p(Xi)
q(Xi)

Xi
i.i.d∼ q

• IS estimate is unbiased

E [µ̂q] =
1
N

N∑
i=1

Eq
[
f(Xi)p(Xi)
q(Xi)

]

= Eq
[
f(X1)p(X1)
q(X1)

]
=

∫
Q

f(x)p(x)
q(x) q(x)dx

=

∫
Q
f(x)p(x)dx

•
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Importance Sampling Estimate

E [µ̂q]
(∗)
=

∫
D
f(x)p(x)dx+

∫
Q∩Dc

f(x)p(x)dx−
∫
D∩Qc

f(x)p(x)dx

=

∫
D
f(x)p(x)dx

=⇒ E [µ̂q] = µ

(∗) follows from the fact that
1. Q∪ (D ∩Qc) = D ∪ (Q∩Dc)

2. Q and D ∩Qc are disjoint sets, so do D and Q∩Dc
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Variance of IS Estimate

• Varq(µ̂q) =
σq

2

N where

σq
2 =

∫
Q

(f(x)p(x))2

q(x) dx− µ2

=

∫
Q

(f(x)p(x)− µq(x))2

q(x) dx

• Note: Since, for IS, supp(q) ⊃ supp(p), Q can be replaced by D
in the above integral

• since σq
2 depends on the choice of q, we can get “optimal” q

that reduces the variance
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Optimal Proposal Distribution

• Optimal q, denoted by q∗ ∝ |f(x)|p(x)

• In fact, q∗ =
|f(x)|p(x)
Ep (|f(x)|)

Proof:

µ2 + σq∗
2 =

∫
Q

(f(x)p(x))2

q∗(x) dx

=

∫
Q

(f(x)p(x))2

|f(x)|p(x)
Ep (|f(x)|)

dx = (Ep (|f(X)|))2 =
(
Eq

[
|f(X)|p(X)
q(X)

])2

=

(∫
Q

|f(x)|p(x)
q(x) q(x)dx

)2

(∗)
≤

∫
Q

f2(x)p2(x)
q2(x) q(x)dx

∫
Q
q(x)dx︸ ︷︷ ︸
=1

= µ2 + σq
2

=⇒ σq∗
2 ≤ σq

2

(∗) follows from Cauchy-Schwartz inequality

18
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Quick Summary of IS

• IS is an unbiased estimate

• By choosing “optimal” proposal distribution, we can reduce the
variance of sample mean estimate

• IS allows us to sample values from “light” tail of the distribution
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Quick Summary of IS

However, there are some pointers to keep in mind

• q(x) > 0 whenever f(x)p(x) ̸= 0. In other words,
supp(q) ⊃ supp(p)

• The likelihood ratio w(x) = p(x)
q(x) gives an idea of how “good” a

proposal distribution is

Ep
[
f2(X)w(X)

]
= Eq

[
f2(X)w2(X)

]
• The appearance of q in the denominator of w means that
light-tailed q are dangerous

• so, q should have tails at least as heavy as p does
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Simulation

• For comparing MC and IS, we consider the toy problem of
calculating the tail of the normal distribution N (0, 1)

P (X > 3) = 1√
2π

∫ ∞

3
exp

(
−x

2

2

)
• We consider two proposal distributions q1 and q2 with heavy tail
and light tail over (3,∞) respectively

• This is to show how the choice of proposal distribution q helps or
hurts our IS estimate of the tail probability
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Proposal Distributions and True Distribution
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Results - Using Heavy Tail Proposal Distribution
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Results - Using Light Tail Proposal Distribution
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Results - Using Light Tail Proposal Distribution
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Conclusion

• We considered the problem of finding the expectation of a
function of random variable

• We have seen that many quantities of interest may be cast as
expectation problem

• Explicit computation of the expectation is often cumbersome, so
we consider simple Monte-Carlo simulation
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Conclusion

• Monte-Carlo simulation may lead to “poor” approximation i.e,
huge variance, in some problems of interest like calculating the
tail of a distribution

• This motivated us to look for an alternative sampling technique
called Importance Sampling which allows us to sample values
from the tail using the so called proposal distribution

• We finally conducted a simple toy experiment to see the
advantage of using IS. We have also demonstrated how could IS
possibly fail
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Thank You
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