Mini Project Report

Semidefinite programming method for integer convex quadratic minimization

Braghadeesh L

MTech, ECE, IISc

April 25, 2019

Outline

Introduction

2 Simple bounds for optimal value

- Finding bounds for optimal value
 - Formulating Lagrange duality
 - Comparison to simple lower bound
 - Semidefinite relaxation

Algorithms

- Randomized Algorithm
- Greedy 1-Opt
- Method for obtaining bounds for optimal value
 - 6 Results

7 Conclusion

8 References

Introduction

Problem

Consider NP hard problem:

minimize
$$f(x) = x^T P x + 2q^T x$$
 (1)
subject to $x \in \mathbf{Z}^n$

- Example: MIMO detection, solving least square problems etc
- Exhaustive search to find the optimal solution over the entire n-dimensional integer lattice is difficult.
- So, suboptimal is obtained by finding strong lower and upper bounds to optimal solution of (1)

Simple bounds for optimal value

- Simple lower bound: Remove integer constraints and solve unconstrained version of (1).
 Let x^{cts} and f^{cts} be the solution point and optimal value respectively to unconstrained version of (1).
- Simple upper bound is obtained by choosing any random integer point in n-dimensional lattice.
- Another upper bound is obtained by rounding off each entry of x^{cts} to nearest integer.

Formulating Lagrange duality

Without loss of generality, we can assume that x^{cts} ∈ [0, 1]ⁿ i.e, If x^{cts} ∉ [0, 1]ⁿ, it can be translated to [0, 1]ⁿ by solving following optimization problem:

minimize
$$(x - v)^T P(x - v) + 2(Pv + q)^T (x - v) + f(v)$$
 (2)
where $v = \text{floor}(x^{cts})$

- Notice every integer point x satisfies $x_i \le 0$ or $x_i \ge 1$ where x_i is the i^{th} coordinate of x.
- Using this fact, we relax the integer constraint x ∈ Zⁿ into set of nonconvex quadratic constraints:

$$x_i(x_i - 1) \ge 0 \quad \forall i = 1, 2, ... n$$

• The following non-convex problem is relaxation of (1):

minimize
$$f(x) = x^T P x + 2q^T x$$
 (3)
ubject to $x_i(x_i - 1) \ge 0$, $\forall i \in \{1, 2, ..., n\}$

• The dual of the above problem is given by:

S

Dual maximize $-\tilde{q}(\lambda)^T (P - \operatorname{diag}(\lambda)) \tilde{q}(\lambda)$ (4) subject to $P - \operatorname{diag}(\lambda) \succeq 0$ $\tilde{q} \in R(P - \operatorname{diag}(\lambda))$ $\lambda \ge 0$ where $\tilde{q}(\lambda) := q + (1/2)\lambda$

• Let
$$g(\lambda) = -\widetilde{q}(\lambda)^T (P - \operatorname{diag}(\lambda))\widetilde{q}(\lambda)$$

Comparison to simple lower bound

• Due to weak duality $g(\lambda) \leq \mathbf{f^*}$ where $\mathbf{f^*}$ is the optimal value to (1).

Theorem

Let $f^{sdp} = \sup_{\lambda \ge 0} g(\lambda)$ be thee lower bound obtained by solving the lagrangian dual. Let ω_{max} and ω_{min} be the maximum and minimum eigenvalue of P. Let **1** be a vector whose entries are 1. Then we have

$$f^{sdp} - f^{cts} \ge \frac{n\omega_{min}^2}{4\omega_{max}} \left(1 - \frac{\|x^{cts} - (1/2)\mathbf{1}\|_2^2}{n/4}\right)^2.$$
 (5)

where f^{sdp} is the optimal value to the dual (4).

From the above result, f^{sdp} ≥ f^{cts}, which indicates that f^{sdp} is a better lower bound to f* than f^{cts}.

• Problem (3) can be reformulated as

minimize
$$\mathbf{Tr}(PX) + 2q^T x$$
 (6)
subject to $\mathbf{diag}(X) \ge x$
 $X = xx^T$
in the variables $X \in \mathbf{R}^{n \times n}$ and $x \in \mathbf{R}^n$

• Then we can relax the non-convex constraint $X = xx^T$ into $X \succeq xx^T$ and rewrite it using the Schur's complements to obtain a convex relaxation:

minimize
$$\mathbf{Tr}(PX) + 2q^T x$$
 (7)
subject to $\mathbf{diag}(X) \ge x$
 $\begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq 0$

Braghadeesh L (MTech, ECE, IISc)

 The optimal value of problem(7) gives a lower bound on f*, just as Lagrangian dual (4) gives a lower bound f^{sdp} on f*.

• Problem(7) and problem (4) are duals of each other and hence give the same lower bound *f*^{sdp}.

Randomized Algorithm

The semidefinite relaxation (7) has a natural probabilistic interpretation, which can be used to construct a simple randomized algorithm for obtaining good suboptimal solutions. That is, optimal values of (7), denoted by X^* and x^* are the parameters of Gaussian distribution $\mathcal{N}(\mu, \Sigma)$ where $\mu = x^*$ and $\Sigma = X^* - x^* x^{*T}$. The algorithm is listed below:

Given number of iterations K

- Solve (7) to get X^* and x^* .
- **2** Form covariance matrix $\sum := X^* x^* x^{*T}$.
- **③** Initialize best point $x^{best} := 0$ and $f^{best} := 0$. for k=1,2....K
- **a** Random sampling: $z^k := x^*$, where $x^* \sim \mathcal{N}(x^*, \Sigma)$.
- Solution Round to nearest integer: $x^k := round(z^k)$.

Opdate the best point: If f^{best} > f(x^k), then set x^{best} := x^k and f^{best} := f(x^k).

Definition

we say that $x \in \mathbf{Z}^n$ is 1-opt if the objective value at x does not improve by changing single coordinate, i.e., $f(x + ce_i) \ge f(x)$ for all indices i and integer c, where f(.) is the objective function in (1).

we shall look at the algorithm: given an initial point $x \in Z^n$.

- Compute initial gradient g = 2(Px + q), where g is the gradient **repeat**
- **2** Stopping criterion: quit if $diag(P) \ge |g|$
- Find descent direction: Find index i and integer c minimizing c²P_{ii} + cg_i.
- Update x. $x_i := x_i + c$.
- Update gradient: $g := g + 2cP_i$.

Method for obtaining bounds for optimal value

- Find x^{cts} by removing integer constraints in (1) and find $f(x^{cts}) = f^{cts}$. This is the simple lower bound on **f***.
- ② Choose any random x^{rnd} ∈ Zⁿ. Find f(x^{rnd}) = f^{rnd}. f^{rnd} is an upper bound on f*. Now use 1-opt algorithm by taking initial point as x^{rnd} to get x̂^{rnd}. f(x̂^{rnd}) is an upper bound (better than f^{rnd}).
- Now we do SDP relaxation on (1) to find lower bound f^{sdp} (> f^{cts}) on **f***. We then run randomized algorithm (3.1) to find x^{best} and find $f(x^{best}) = f^{best}$, which is an upper bound on **f***.
- We also run 1-opt algorithm on every feasible solution point obtained in randomized algorithm (3.1) (after SDP relaxation) and find x^{best}.
- Similar Finally we get $f(x^{rnd})$, $f(\hat{x}^{rnd})$, f^{best} , and \hat{f}^{best} as upper bounds and f^{cts} and f^{sdp} as lower bounds.

Sr.No.	Dimension(n)	Lower bound (f ^{sdp})	Upper bound(f ^{best})	L2 norm of suboptimal solution(x ^{best})
1	130	141.90350	151.12220	11.35782
2	120	118.38522	125.58434	10.58301
3	110	105.65600	112.46488	11.26943
4	100	123.34624	128.95646	12.36932
5	90	75.97197	80.18095	10.04988

Table: Output

-

Image: A mathematical states of the state

æ

Conclusion

- Obtained simple lower bound on optimal value of (1) by removing the integer constraint.
- **2** The lower bound is further improved by making SDP relaxation.
- In order to get better upper bounds for the optimal value of (1), randomized algorithm and greedy 1-opt algorithm are carried out.
- Instead of searching over the entire n- dimensional integer lattice, search is done over restricted space by making some relaxation in order to obtain suboptimal solution to (1).

J. Park and S. Boyd.

A semidefinite programming method for integer convex quadratic minimization.

Springer-Verlag, Berlin, Heidelberg, 2017.

📎 S. Boyd and L. Vandenberghe Convex Optimization. Cambridge University Press, 2004