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Introduction

Problem

Consider NP hard problem:

minimize f (x) = xTPx + 2qT x (1)

subject to x ∈ Zn

Example: MIMO detection, solving least square problems etc

Exhaustive search to find the optimal solution over the entire
n-dimensional integer lattice is difficult.

So, suboptimal is obtained by finding strong lower and upper bounds
to optimal solution of (1)

Goal

Find strong lower and upper bounds for optimal value of (1)
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Simple bounds for optimal value

Simple lower bound: Remove integer constraints and solve
unconstrained version of (1).
Let xcts and f cts be the solution point and optimal value respectively
to unconstrained version of (1).

Simple upper bound is obtained by choosing any random integer
point in n-dimensional lattice.

Another upper bound is obtained by rounding off each entry of xcts to
nearest integer.

Braghadeesh L (MTech, ECE, IISc ) Mini Project Report April 25, 2019 4 / 15



Formulating Lagrange duality

Without loss of generality, we can assume that xcts ∈ [0, 1]n i.e, If
xcts /∈ [0, 1]n, it can be translated to [0, 1]n by solving following
optimization problem:

minimize (x − v)TP(x − v) + 2(Pv + q)T (x − v) + f (v) (2)

where v = floor(xcts)

Notice every integer point x satisfies xi ≤ 0 or xi ≥ 1 where xi is the
i th coordinate of x .

Using this fact, we relax the integer constraint x ∈ Zn into set of
nonconvex quadratic constraints:

xi (xi − 1) ≥ 0 ∀i = 1, 2, ...n
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The following non-convex problem is relaxation of (1):

minimize f (x) = xTPx + 2qT x (3)

subject to xi (xi − 1) ≥ 0, ∀i ∈ {1,2,...n}

The dual of the above problem is given by:

Dual

maximize − q̃(λ)T (P − diag(λ))q̃(λ) (4)

subject to P − diag(λ) � 0
q̃ ∈ R(P − diag(λ))
λ ≥ 0

where q̃(λ) := q + (1/2)λ

Let g(λ) = −q̃(λ)T (P − diag(λ))q̃(λ)
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Comparison to simple lower bound

Due to weak duality g(λ) ≤ f* where f* is the optimal value to (1).

Theorem

Let f sdp = supλ≥0 g(λ) be thee lower bound obtained by solving the
lagrangian dual. Let ωmax and ωmin be the maximum and minimum
eigenvalue of P. Let 1 be a vector whose entries are 1. Then we have

f sdp − f cts ≥
nω2

min

4ωmax

(
1− ‖x

cts − (1/2)1‖22
n/4

)2

. (5)

where f sdp is the optimal value to the dual (4).

From the above result, f sdp ≥ f cts , which indicates that f sdp is a
better lower bound to f* than f cts .
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Semidefinite relaxation

Problem (3) can be reformulated as

minimize Tr(PX ) + 2qT x (6)

subject to diag(X ) ≥ x
X = xxT

in the variables X ∈ Rn×n and x ∈ Rn

Then we can relax the non-convex constraint X = xxT into X � xxT

and rewrite it using the Schur’s complements to obtain a convex
relaxation:

minimize Tr(PX ) + 2qT x (7)

subject to diag(X ) ≥ x[
X x
xT 1

]
� 0
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The optimal value of problem(7) gives a lower bound on f*, just as
Lagrangian dual (4) gives a lower bound f sdp on f*.

Problem(7) and problem (4) are duals of each other and hence give
the same lower bound f sdp.
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Randomized Algorithm

The semidefinite relaxation (7) has a natural probabilistic interpretation,
which can be used to construct a simple randomized algorithm for
obtaining good suboptimal solutions. That is, optimal values of (7),
denoted by X ∗ and x∗ are the parameters of Gaussian distribution
N (µ,

∑
) where µ = x∗ and

∑
= X ∗ − x∗x∗T .The algorithm is listed

below:
Given number of iterations K

1 Solve (7) to get X ∗ and x∗.

2 Form covariance matrix
∑

:= X ∗ − x∗x∗T .

3 Initialize best point xbest := 0 and f best := 0. for k=1,2....K

4 Random sampling: zk := x∗, where
x∗ ∼ N (x∗,

∑
).

5 Round to nearest integer: xk := round(zk).

6 Update the best point: If f best > f (xk), then set xbest := xk and
f best := f (xk).
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Greedy 1-opt

Definition

we say that x ∈ Zn is 1-opt if the objective value at x does not improve by
changing single coordinate, i.e., f (x + cei ) ≥ f (x) for all indices i and
integer c , where f (.) is the objective function in (1).

we shall look at the algorithm:
given an initial point x ∈ Zn.

1 Compute initial gradient g = 2(Px + q), where g is the gradient
repeat

2 Stopping criterion: quit if diag(P) ≥ |g |
3 Find descent direction: Find index i and integer c minimizing

c2Pii + cgi .

4 Update x . xi := xi + c .

5 Update gradient: g := g + 2cPi .
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Method for obtaining bounds for optimal value

1 Find xcts by removing integer constraints in (1) and find
f (xcts) = f cts . This is the simple lower bound on f*.

2 Choose any random x rnd ∈ Zn. Find f (x rnd) = f rnd . f rnd is an upper
bound on f*. Now use 1-opt algorithm by taking initial point as x rnd

to get x̂ rnd . f (x̂ rnd) is an upper bound (better than f rnd).

3 Now we do SDP relaxation on (1) to find lower bound f sdp (> f cts)
on f*. We then run randomized algorithm (3.1) to find xbest and find
f (xbest) = f best , which is an upper bound on f*.

4 We also run 1-opt algorithm on every feasible solution point obtained
in randomized algorithm (3.1) (after SDP relaxation) and find x̂best .

5 Finally we get f (x rnd), f (x̂ rnd), f best , and f̂ best as upper bounds and
f cts and f sdp as lower bounds.
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Results

Sr.No. Dimension(n) Lower bound (f sdp) Upper bound(f best ) L2 norm of suboptimal solution(xbest )

1 130 141.90350 151.12220 11.35782
2 120 118.38522 125.58434 10.58301
3 110 105.65600 112.46488 11.26943
4 100 123.34624 128.95646 12.36932
5 90 75.97197 80.18095 10.04988

Table: Output
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Conclusion

1 Obtained simple lower bound on optimal value of (1) by removing the
integer constraint.

2 The lower bound is further improved by making SDP relaxation.

3 In order to get better upper bounds for the optimal value of (1),
randomized algorithm and greedy 1-opt algorithm are carried out.

4 Instead of searching over the entire n- dimensional integer lattice,
search is done over restricted space by making some relaxation in
order to obtain suboptimal solution to (1).
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