Linear Estimation in Krein Spaces

Braghadeesh Lakshminarayanan

Division of Decision and Control Systems, KTH Royal Institute of Technology,

Stockholm, Sweden

Mathematical Methods in Signals, Systems and Control
January 16, 2023

Motivation: \mathbf{H}^{∞} Problem

$$
\left\{\begin{array}{lc}
x_{i+1}=F_{i} x_{i}+G_{i} u_{i}, & x_{0} \\
y_{i}=H_{i} x_{i}+v_{i}, & i \geq 0
\end{array}\right.
$$

- Goal: To estimate some arbitrary linear combination of the states, say

$$
z_{i}=L_{i} x_{i}
$$

- A Posteriori estimate: $\check{z}_{i \mid i}=\mathcal{F}_{f}\left(y_{0}, y_{1}, \cdots, y_{i}\right)$
- How do we gauge the "quality" of the above estimate?

Motivation: \mathbf{H}^{∞} Problem

H^{∞} Problem

Find estimation strategies $\check{z}_{i \mid i}=\mathcal{F}_{f}\left(y_{0}, y_{1}, \cdots, y_{i}\right)$ that achieve $\left\|T_{i}\left(\mathcal{F}_{f}\right)\right\|_{\infty}<\gamma_{f}\left(\gamma_{f}>0\right)$

$$
\begin{aligned}
& \left\|T_{i}\left(\mathcal{F}_{f}\right)\right\|_{\infty}=\sup _{x_{0}, u \in h_{2}, v \in h_{2}} \\
& \frac{\sum_{j=0}^{i} e_{f, j}^{*} e_{f, j}}{\left(x_{0}-\check{x}_{0}\right)^{*} \Pi_{0}^{-1}\left(x_{0}-\check{x}_{0}\right)+\sum_{j=0}^{i} u_{j}^{*} u_{j}+\sum_{j=0}^{i} v_{j}^{*} v_{j}}
\end{aligned}
$$

[2] "Linear estimation in Krein spaces. II. Applications" Hassibi, B.; Sayed, A.H.; Kailath, T. Automatic Control, IEEE Transactions on Volume: 41 1, Jan. 1996, Page(s): 34-49

Motivation: \mathbf{H}^{∞} Problem

$$
\|T\|_{\infty}:=\sup _{u \in h_{2}, u \neq 0} \frac{\|T u\|_{2}}{\|u\|_{2}}
$$

where $\|u\|_{2}$ is the h_{2}-norm of the causal sequence $\left\{u_{k}\right\}$, i.e., $\|u\|_{2}^{2}=\sum_{k=0}^{\infty} u_{k}^{*} u_{k}$

- Interpretation: Maximum energy gain from the input u to the output y
- Idea: Filter \mathcal{F}_{f} to H^{∞} can be obtained as certain Kalman filter via suitable construction of state-space model
- Caution: Projections cannot be realized in Hilbert space unlike standard Kalman filter.

> Remedy?
> Projection in Krein Space!

- Projections in Krein Space often lead to indefinite quadratic forms \Longrightarrow need additional conditions to ensure uniqueness and minimum.

Outline

Krein Space

Projections and Quadratic Forms

Back to H^{∞} : Krein Space Solution

Conclusion

Outline

Krein Space

Projections and Quadratic Forms

Back to H^{∞} : Krein Space Solution

Conclusion

Krein Space

An abstract vector space $\{\mathcal{K},\langle\cdot, \cdot\rangle\}$ that satisfies the following requirements is called a Krein Space:
i) \mathcal{K} is a linear space over \mathcal{C}, the complex numbers.
ii) $\langle\boldsymbol{y}, \boldsymbol{x}\rangle=\langle\boldsymbol{x}, \boldsymbol{y}\rangle^{*}$,
iii) $\langle a \boldsymbol{x}+b \boldsymbol{y}, \boldsymbol{z}\rangle=a\langle\mathbf{x}, \mathbf{z}\rangle+b\langle\boldsymbol{y}, \boldsymbol{z}\rangle$
for any $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathcal{K}, a, b \in \mathcal{C}$
iv) The vector space \mathcal{K} admits a direct orthogonal sum decomposition

$$
\mathcal{K}=\mathcal{K}_{+} \oplus \mathcal{K}_{-}
$$

such that $\left\{\mathcal{K}_{+},\langle\cdot, \cdot\rangle\right\}$ and $\left\{\mathcal{K}_{-},-\langle\cdot, \cdot\rangle\right\}$ are Hilbert spaces, and

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=0
$$

for any $x \in \mathcal{K}_{+}$and $y \in \mathcal{K}_{-}$.
Note: If $\boldsymbol{x}, \boldsymbol{y}$ are stochastic variables, then $\langle\boldsymbol{x}, \boldsymbol{y}\rangle:=\mathbb{E}\left[\boldsymbol{x} \boldsymbol{y}^{*}\right]$

[^0]
Krein Space

Krein space looks like Hilbert space except that
$\rightarrow\langle\boldsymbol{x}, \boldsymbol{x}\rangle=0 \Longrightarrow \mathbf{x}=0$ (\mathbf{x} is called Neutral vector)

- There exists $\mathbf{x} \neq \mathbf{0}$ in a linear subspace (M) of \mathcal{K} such that $\mathbf{x} \perp M$ (\mathbf{x} is called Isotropic vector)
- $\langle\mathbf{x}, \boldsymbol{x}\rangle$ can be negative

Outline

Krein Space

Projections and Quadratic Forms

Back to H^{∞} : Krein Space Solution

Conclusion

Projections in Krein Spaces

Definition

Given $\mathbf{z},\left\{\boldsymbol{y}_{0}, \boldsymbol{y}_{1}, \cdots, \boldsymbol{y}_{N}\right\}$ in \mathcal{K}, $\hat{\boldsymbol{z}}$ is projection of \boldsymbol{z} onto $\mathcal{L}\left\{\boldsymbol{y}_{0}, \boldsymbol{y}_{1}, \cdots, \boldsymbol{y}_{N}\right\}$ if

$$
\mathbf{z}=\hat{\mathbf{z}}+\tilde{\mathbf{z}}
$$

where $\hat{\mathbf{z}} \in \mathcal{L}\left\{\boldsymbol{y}_{0}, \cdots, \boldsymbol{y}_{N}\right\}$ and $\tilde{\mathbf{z}}$ satisfies the orthogonality condition

$$
\tilde{\boldsymbol{z}} \perp \mathcal{L}\left\{\boldsymbol{y}_{0}, \cdots, \boldsymbol{y}_{N}\right\}
$$

or equivalently, $\left\langle\tilde{\boldsymbol{z}}, \boldsymbol{y}_{i}\right\rangle=0$ for $i=0,1, \cdots, N$.
Remark:

- Projections always exist and unique in Hilbert space
- In Krein space, existence and uniqueness of projection require additional conditions

Projections in Krein Spaces

Lemma

If the Gramian matrix $R_{y}=\langle\boldsymbol{y}, \boldsymbol{y}\rangle$ is nonsingular, then the projection of \boldsymbol{z} onto $\mathcal{L}\{\boldsymbol{y}\}$ exists, is unique, and is given by

$$
\hat{\mathbf{z}}=\langle\mathbf{z}, \boldsymbol{y}\rangle\langle\boldsymbol{y}, \boldsymbol{y}\rangle^{-1} \boldsymbol{y}=R_{z y} R_{y}^{-1} \mathbf{y} .
$$

So, standing assumption: R_{y} is nonsingular

Projections and Quadratic Forms

- In Hilbert space, projections minimize certain quadratic forms
- In Krein space, projections stationarize certain quadratic forms
- Need additional condition for stationary point to be minimum

To this end, we look at two closely related problems,

- Stochastic minimization problem
- A partially equivalent deterministic problem

Stochastic Minimization Problem

A natural quadratic form to study: error Gramian

$$
P(k)=\left\langle\mathbf{z}-\boldsymbol{k}^{*} \boldsymbol{y}, \mathbf{z}-k^{*} \mathbf{y}\right\rangle,
$$

i) $\left\{\boldsymbol{y}_{0}, \cdots, \boldsymbol{y}_{N}\right\}$: collection of elements in a Krein space \mathcal{K} with indefinite inner product $\langle\cdot, \cdot\rangle$,
ii) $\boldsymbol{z}=\operatorname{col}\left\{z_{0}, \cdots, z_{M}\right\}:$ some column vector of elements in \mathcal{K},
iii) $k^{*} \boldsymbol{y}$ an arbitrary linear combination of $\left\{\boldsymbol{y}_{0}, \cdots, \boldsymbol{y}_{N}\right\}$. $\boldsymbol{y}=\operatorname{col}\left\{\boldsymbol{y}_{0}, \cdots, \boldsymbol{y}_{N}\right\}$

$$
P(k)=\|\boldsymbol{z}-\hat{\mathbf{z}}\|_{\mathcal{K}}^{2}+\left\|\hat{\mathbf{z}}-\boldsymbol{k}^{*} \boldsymbol{y}\right\|_{\mathcal{K}}^{2}
$$

where $\hat{\mathbf{z}}=k_{0}^{*} \boldsymbol{y}=R_{z y} R_{y}^{-1}$ is the projection of \boldsymbol{z} onto $\mathcal{L}(\mathbf{y})$

Stochastic Minimization Problem

- $\left\|\hat{\mathbf{z}}-k^{*} \boldsymbol{y}\right\|^{2}=\left\|k_{0}^{*} \boldsymbol{y}-k^{*} \boldsymbol{y}\right\|^{2}=0$, even if $k_{0} \neq k$.
- $\left\|k_{0}^{*} \boldsymbol{y}-k^{*} \boldsymbol{y}\right\|^{2}$ could be negative, $P(k)$ may not be minimized by choosing $k=k_{0}$

Theorem 1

When R_{y} is nonsingular, k_{0}, the unique coefficient matrix in the projection of z onto $\mathcal{L}\{\boldsymbol{y}\}, \hat{\mathbf{z}}=k_{0}^{*} \boldsymbol{y}, k_{0}=R_{y}^{-1} R_{y z}$ yields the unique stationary point of the error Gramian

$$
\begin{aligned}
P(k) & \triangleq\left\langle\mathbf{z}-k^{*} \mathbf{y}, \mathbf{z}-k^{*} \mathbf{y}\right\rangle \\
& =\left[\begin{array}{ll}
1 & -k^{*}
\end{array}\right]\left[\begin{array}{ll}
R_{z} & R_{z y} \\
R_{y z} & R_{y}
\end{array}\right]\left[\begin{array}{c}
1 \\
-k
\end{array}\right]
\end{aligned}
$$

Further, k_{0} is a unique minimum iff $R_{y}>0$ i.e., R_{y} is not only nonsingular but also positive definite.

A Partially Equivalent Deterministic Problem

- Scalar second-order form:

$$
J(z, y) \triangleq\left[\begin{array}{ll}
z^{*} & y^{*}
\end{array}\right]\left[\begin{array}{ll}
R_{z} & R_{z y} \\
R_{y z} & R_{y}
\end{array}\right]^{-1}\left[\begin{array}{l}
z \\
y
\end{array}\right]
$$

Theorem 2
Suppose both R_{y} and the block matrix in above equation are nonsingular. Then
a) The stationary point z_{0} of $J(z, y)$ over z is given by

$$
z_{0}=R_{z y} R_{y}^{-1} y
$$

b) The value of $J(z, y)$ at the stationary point is

$$
J\left(z_{0}, y\right)=y^{*} R_{y}^{-1} y
$$

Further, z_{0} is a minimum iff $R_{z}-R_{z y} R_{y}^{-1} R_{y z}>0$.

Implications of Theorem 1 and 2

- Stationary point for the scalar second-order form is "same" as that in Theorem 1 for Krein space projection of vector \mathbf{z} onto $\mathcal{L}(\mathbf{y})$
- H^{∞} problems will lead directly to certain indefinite quadratic forms:
- Theorem 1 provides algorithm to find stationary point via corresponding Krein-space projection
- Theorem 2 is used to check if stationary point obtained above is indeed the minimum

Outline

Krein Space
Projections and Quadratic Forms

Back to H^{∞} : Krein Space Solution

Conclusion

Back to H^{∞} : Krein Space Solution

- Recall H^{∞} problem: $\left\|T_{i}\left(\mathcal{F}_{f}\right)\right\|_{\infty}<\gamma_{f}$
\rightarrow For all nonzero $\left\{x_{0},\left\{u_{j}\right\}_{j=0}^{i},\left\{v_{j}\right\}_{j=0}^{i}\right\}$
$\frac{\sum_{j=0}^{i}\left|\check{z}_{j \mid j}-L_{j} x_{j}\right|^{2}}{\left(x_{0}-\check{x}_{0}\right)^{*} \Pi_{0}^{-1}\left(x_{0}-\check{x}_{0}\right)+\sum_{j=0}^{i}\left|u_{j}\right|^{2}+\sum_{j=0}^{i}\left|y_{j}-H_{j} x_{j}\right|^{2}}<\gamma_{f}^{2}$
\Longrightarrow for all $k \leq i$

$$
\begin{aligned}
& \frac{\sum_{j=0}^{k}\left|\check{z}_{j}\right| j-\left.L_{j} x_{j}\right|^{2}}{\left(x_{0}-\check{x}_{0}\right)^{*} \Pi_{0}^{-1}\left(x_{0}-\check{x}_{0}\right)+\sum_{j=0}^{k}\left|u_{j}\right|^{2}+\sum_{j=0}^{k}\left|y_{k}-H_{i} x_{i}\right|^{2}} \\
& <\gamma_{f}^{2} .
\end{aligned}
$$

- The above inequality is an indefinite quadratic form

Back to H^{∞} : Krein Space Solution

Lemma 3

$\left\|T_{i}\left(\mathcal{F}_{f}\right)\right\|_{\infty}<\gamma_{f}$ iff there exists $\check{z}_{k \mid k}=\mathcal{F}_{f}\left(y_{0}, \cdots, y_{k}\right)$ (for all $\left.0 \leq k \leq i\right)$ such that for all complex vectors x_{0}, for all causal sequences $\left\{u_{j}\right\}_{j=0}^{i}$, and for all nonzero causal sequences $\left\{y_{j}\right\}_{j=0}^{i}$, the scalar quadratic form

$$
\begin{aligned}
& J_{f, k}\left(x_{0}, u_{0}, \cdots, u_{k}, y_{0}, \cdots, y_{k}\right) \\
& =x_{0}^{*} \Pi_{0}^{-1} x_{0}+\sum_{j=0}^{k} u_{j}^{*} u_{j} \\
& \quad+\sum_{j=0}^{k}\left(y_{j}-H_{j} x_{j}\right)^{*}\left(y_{j}-H_{j} x_{j}\right) \\
& \quad-\gamma_{f}^{-2} \sum_{j=0}^{k}\left(\check{z}_{j \mid j}-L_{j} x_{j}\right)^{*}\left(\check{z}_{j \mid j}-L_{j} x_{j}\right)
\end{aligned}
$$

satisfies $J_{f, k}\left(x_{0}, u_{0}, \cdots, u_{k}, y_{0}, \cdots, y_{k}\right)>0$ for all $0 \leq k \leq i$

Back to H^{∞} : Krein Space Solution

To show that $J_{f, k}\left(x_{0}, u_{0}, \cdots, u_{k}, y_{0}, \cdots, y_{k}\right)>0$ for all $0 \leq k \leq i$, following Lemma is used

Lemma 4

The scalar quadratic forms $J_{f, k}\left(x_{0}, u_{0}, \cdots, u_{k}, y_{0}, \cdots, y_{k}\right)$ satisfy the conditions above iff, for all $0 \leq k \leq i$
i) $J_{f, k}\left(x_{0}, u_{0}, \cdots, u_{k}, y_{0}, \cdots, y_{k}\right)$ has a minimum with respect to $\left\{x_{0}, u_{0}, u_{1}, \cdots u_{k}\right\}$.
ii) The $\left\{\check{z}_{k \mid k}\right\}_{k=0}^{i}$ can be chosen such that the value of
$J_{f, k}\left(x_{0}, u_{0}, \cdots, u_{k}, y_{0}, \cdots, y_{k}\right)$ at this minimum is positive, viz.

$$
\min _{\left\{x_{0}, u_{0}, \cdots, u_{k}\right\}} J_{f, k}\left(x_{0}, u_{0}, \cdots, u_{k}, y_{0}, \cdots, y_{k}\right)>0
$$

Implications of Lemma 3 and 4

- Lemma 3 provides necessary and sufficient condition for solution to H^{∞} problem.
- Lemma 4 guarantees that stationary point of quadratic form is a minimum
- Lemma 4 also guarantees positivity of the quadratic form

To find the stationary point, we make use of Krein-space projection.

- Need a corresponding state-space model

Krein Space State Space Model

The following Krein-space system is introduced:

$$
\left\{\begin{aligned}
\mathbf{x}_{j+1} & =F_{j} \mathbf{x}_{j}+G_{j} \mathbf{u}_{j} \\
{\left[\begin{array}{c}
\boldsymbol{y}_{j} \\
\check{z}_{j \mid j}
\end{array}\right] } & =\left[\begin{array}{c}
H_{j} \\
L_{j}
\end{array}\right] \mathbf{x}_{j}+\mathbf{v}_{j}
\end{aligned}\right.
$$

with

$$
\left\langle\left[\begin{array}{l}
\mathbf{x}_{0} \\
\mathbf{u}_{j} \\
\mathbf{v}_{j}
\end{array}\right],\left[\begin{array}{l}
\mathbf{x}_{0} \\
\boldsymbol{u}_{k} \\
\mathbf{v}_{k}
\end{array}\right]\right\rangle=\left[\begin{array}{cccc}
\Pi_{0} & 0 & 0 \\
0 & I \delta_{j k} & & 0 \\
0 & 0 & {\left[\begin{array}{lc}
I & 0 \\
0 & -\gamma_{f}^{2} I
\end{array}\right] \delta_{j k}}
\end{array}\right]
$$

- Corresponding Kalman filter recursion gives aposteriori estimate $\check{z}_{i \mid i}=\mathcal{F}_{f}\left(y_{0}, y_{1}, \cdots, y_{i}\right)$ that satisfies $\left\|T_{i}\left(\mathcal{F}_{f}\right)\right\|_{\infty}<\gamma_{f}$

Outline

Krein Space
Projections and Quadratic Forms
Back to H^{∞} : Krein Space Solution

Conclusion

Conclusion

- H^{∞} problem leads to indefinite quadratic form
- Indefinite quadratic forms are handled well by Krein-space projection
- Recursive solution by making use of Kalman filter theory on Krein-space state-space model

[^0]: [1] "Linear estimation in Krein spaces. I. Theory" Hassibi, B.; Sayed, A.H.; Kailath, T. Automatic Control, IEEE Transactions on Volume: 41 1, Jan. 1996, Page(s): 18-33

