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Motivation: H∞ Problem

{
xi+1 = Fixi + Giui, x0

yi = Hixi + vi, i ≥ 0

▶ Goal: To estimate some arbitrary linear combination of the states, say

zi = Lixi

▶ A Posteriori estimate: ži|i = Ff (y0, y1, · · · , yi)
▶ How do we gauge the “quality" of the above estimate?
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Motivation: H∞ Problem

H∞ Problem
Find estimation strategies ži|i = Ff (y0, y1, · · · , yi) that achieve
∥Ti (Ff )∥∞ < γf (γf > 0)

∥Ti (Ff )∥∞ = sup
x0,u∈h2,v∈h2∑i

j=0 e
∗
f ,jef ,j

(x0 − x̌0)
∗ Π−1

0 (x0 − x̌0) +
∑i

j=0 u
∗
j uj +

∑i
j=0 v

∗
j vj

[2] “Linear estimation in Krein spaces. II. Applications” Hassibi, B.; Sayed, A.H.; Kailath, T.
Automatic Control, IEEE Transactions on Volume: 41 1, Jan. 1996, Page(s): 34 -49
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Motivation: H∞ Problem

∥T∥∞ := sup
u∈h2,u̸=0

∥Tu∥2

∥u∥2
,

where ∥u∥2 is the h2-norm of the causal sequence {uk}, i.e., ∥u∥2
2 =

∑∞
k=0 u

∗
kuk

▶ Interpretation: Maximum energy gain from the input u to the output y

▶ Idea: Filter Ff to H∞ can be obtained as certain Kalman filter via suitable
construction of state-space model

▶ Caution: Projections cannot be realized in Hilbert space unlike standard
Kalman filter.

Remedy?
Projection in Krein Space!

▶ Projections in Krein Space often lead to indefinite quadratic forms =⇒
need additional conditions to ensure uniqueness and minimum.

Braghadeesh Lakshminarayanan 3



Outline

Krein Space

Projections and Quadratic Forms

Back to H∞: Krein Space Solution

Conclusion

Braghadeesh Lakshminarayanan 4



Outline

Krein Space

Projections and Quadratic Forms

Back to H∞: Krein Space Solution

Conclusion

Braghadeesh Lakshminarayanan 5



Krein Space

An abstract vector space {K, ⟨·, ·⟩} that satisfies the following requirements is
called a Krein Space:
i) K is a linear space over C, the complex numbers.
ii) ⟨y, x⟩ = ⟨x, y⟩∗,
iii) ⟨ax + by, z⟩ = a⟨x, z⟩+ b⟨y, z⟩
for any x, y, z ∈ K, a, b ∈ C
iv) The vector space K admits a direct orthogonal sum decomposition

K = K+ ⊕K−

such that {K+, ⟨·, ·⟩} and {K−,−⟨·, ·⟩} are Hilbert spaces, and

⟨x, y⟩ = 0

for any x ∈ K+and y ∈ K−.
Note: If x, y are stochastic variables, then ⟨x, y⟩ := E[xy∗]

[1] “Linear estimation in Krein spaces. I. Theory” Hassibi, B.; Sayed, A.H.; Kailath, T. Automatic
Control, IEEE Transactions on Volume: 41 1, Jan. 1996, Page(s): 18 -33
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Krein Space

Krein space looks like Hilbert space except that
▶ ⟨x, x⟩ = 0 ≠⇒ x = 0 (x is called Neutral vector)
▶ There exists x ̸= 0 in a linear subspace (M) of K such that x ⊥ M (x is

called Isotropic vector)
▶ ⟨x, x⟩ can be negative
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Projections in Krein Spaces

Definition
Given z, {y0, y1, · · · , yN} in K, ẑ is projection of z onto L{y0, y1, · · · , yN} if

z = ẑ + z̃

where ẑ ∈ L{y0, · · · , yN} and z̃ satisfies the orthogonality condition

z̃ ⊥ L{y0, · · · , yN}

or equivalently, ⟨z̃, yi⟩ = 0 for i = 0, 1, · · · ,N.

Remark:
▶ Projections always exist and unique in Hilbert space
▶ In Krein space, existence and uniqueness of projection require additional

conditions

Braghadeesh Lakshminarayanan 9



Projections in Krein Spaces

Lemma
If the Gramian matrix Ry = ⟨y, y⟩ is nonsingular, then the projection of z onto
L{y} exists, is unique, and is given by

ẑ = ⟨z, y⟩⟨y, y⟩−1y = RzyR−1
y y.

So, standing assumption: Ry is nonsingular
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Projections and Quadratic Forms

▶ In Hilbert space, projections minimize certain quadratic forms
▶ In Krein space, projections stationarize certain quadratic forms
▶ Need additional condition for stationary point to be minimum

To this end, we look at two closely related problems,
▶ Stochastic minimization problem
▶ A partially equivalent deterministic problem
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Stochastic Minimization Problem

A natural quadratic form to study: error Gramian

P(k) = ⟨z − k∗y, z − k∗y⟩ ,

i) {y0, · · · , yN}: collection of elements in a Krein space K with indefinite inner
product ⟨·, ·⟩,
ii) z = col {z0, · · · , zM}: some column vector of elements in K,
iii) k∗y an arbitrary linear combination of {y0, · · · , yN}. y = col {y0, · · · , yN}

P(k) = ∥z − ẑ∥2
K + ∥ẑ − k∗y∥2

K

where ẑ = k∗0y = RzyR−1
y is the projection of z onto L(y)
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Stochastic Minimization Problem

▶ ∥ẑ − k∗y∥2 = ∥k∗0y − k∗y∥2 = 0, even if k0 ̸= k.
▶ ∥k∗0y − k∗y∥2 could be negative, P(k) may not be minimized by choosing

k = k0

Theorem 1
When Ry is nonsingular, k0, the unique coefficient matrix in the projection of z
onto L{y} , ẑ = k∗0y, k0 = R−1

y Ryz yields the unique stationary point of the
error Gramian

P(k) ≜ ⟨z − k∗y, z − k∗y⟩

=
[
I −k∗

] [ Rz Rzy
Ryz Ry

] [
I
−k

]
Further, k0 is a unique minimum iff Ry > 0 i.e., Ry is not only nonsingular but
also positive definite.
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A Partially Equivalent Deterministic Problem

▶ Scalar second-order form:

J(z, y) ≜
[
z∗ y∗

] [ Rz Rzy
Ryz Ry

]−1 [ z
y

]

Theorem 2
Suppose both Ry and the block matrix in above equation are nonsingular. Then
a) The stationary point z0 of J(z, y) over z is given by

z0 = RzyR−1
y y.

b) The value of J(z, y) at the stationary point is

J (z0, y) = y∗R−1
y y

Further, z0 is a minimum iff Rz − RzyR−1
y Ryz > 0.
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Implications of Theorem 1 and 2

▶ Stationary point for the scalar second-order form is “same" as that in
Theorem 1 for Krein space projection of vector z onto L(y)

▶ H∞ problems will lead directly to certain indefinite quadratic forms:
▶ Theorem 1 provides algorithm to find stationary point via corresponding

Krein-space projection
▶ Theorem 2 is used to check if stationary point obtained above is indeed the

minimum
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Back to H∞: Krein Space Solution

▶ Recall H∞ problem: ∥Ti (Ff )∥∞ < γf

▶ For all nonzero
{
x0, {uj}ij=0 , {vj}

i
j=0

}
∑i

j=0 |̌zj|j−Ljxj|2

(x0−x̌0)
∗Π−1

0 (x0−x̌0)+
∑i

j=0|uj|
2+

∑i
j=0|yj−Hjxj|2 < γ2

f

=⇒ for all k ≤ i ∑k
j=0

∣∣̌zj|j − Ljxj
∣∣2

(x0 − x̌0)
∗ Π−1

0 (x0 − x̌0) +
∑k

j=0 |uj|
2 +

∑k
j=0 |yk − Hixi|2

< γ2
f .

▶ The above inequality is an indefinite quadratic form
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Back to H∞: Krein Space Solution

Lemma 3
∥Ti (Ff )∥∞ < γf iff there exists žk|k = Ff (y0, · · · , yk) (for all 0 ≤ k ≤ i ) such
that for all complex vectors x0, for all causal sequences {uj}ij=0, and for all

nonzero causal sequences {yj}ij=0, the scalar quadratic form

Jf ,k (x0, u0, · · · , uk, y0, · · · , yk)

= x∗0Π
−1
0 x0 +

k∑
j=0

u∗j uj

+
k∑
j=0

(yj − Hjxj)
∗ (yj − Hjxj)

− γ−2
f

k∑
j=0

(
žj|j − Ljxj

)∗ (
žj|j − Ljxj

)
satisfies Jf ,k (x0, u0, · · · , uk, y0, · · · , yk) > 0 for all 0 ≤ k ≤ i
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Back to H∞: Krein Space Solution

To show that Jf ,k (x0, u0, · · · , uk, y0, · · · , yk) > 0 for all 0 ≤ k ≤ i, following
Lemma is used

Lemma 4
The scalar quadratic forms Jf ,k (x0, u0, · · · , uk, y0, · · · , yk) satisfy the conditions
above iff, for all 0 ≤ k ≤ i
i) Jf ,k (x0, u0, · · · , uk, y0, · · · , yk) has a minimum with respect to
{x0, u0, u1, · · · uk}.
ii) The

{
žk|k

}i
k=0 can be chosen such that the value of

Jf ,k (x0, u0, · · · , uk, y0, · · · , yk) at this minimum is positive, viz.

min
{x0,u0,··· ,uk}

Jf ,k (x0, u0, · · · , uk, y0, · · · , yk) > 0
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Implications of Lemma 3 and 4

▶ Lemma 3 provides necessary and sufficient condition for solution to H∞

problem.
▶ Lemma 4 guarantees that stationary point of quadratic form is a minimum
▶ Lemma 4 also guarantees positivity of the quadratic form

To find the stationary point, we make use of Krein-space projection.
▶ Need a corresponding state-space model
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Krein Space State Space Model

The following Krein-space system is introduced: xj+1 = Fjxj + Gjuj[
yj
žj|j

]
=

[
Hj
Lj

]
xj + vj

with 〈x0

uj
vj

 ,

x0

uk
vk

〉 =


Π0 0 0
0 Iδjk 0

0 0
[
I 0
0 −γ2

f I

]
δjk


▶ Corresponding Kalman filter recursion gives aposteriori estimate

ži|i = Ff (y0, y1, · · · , yi) that satisfies ∥Ti (Ff )∥∞ < γf
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Conclusion

▶ H∞ problem leads to indefinite quadratic form
▶ Indefinite quadratic forms are handled well by Krein-space projection
▶ Recursive solution by making use of Kalman filter theory on Krein-space

state-space model
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